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Abstract

A method for ef�cient border ownership assignment in
2D images is proposed. Leveraging on recent advances us-
ing Structured Random Forests (SRF) for boundary detec-
tion [8], we impose a novel border ownership structure that
detects both boundaries and border ownership at the same
time. Key to this work are features that predict ownership
cues from 2D images. To this end, we use several different
local cues: shape, spectral properties of boundary patches,
and semi-global grouping cues that are indicative of per-
ceived depth. For shape, we use HoG-like descriptors that
encode local curvature (convexity and concavity). For spec-
tral properties, such as extremal edges [28], we �rst learn
an orthonormal basis spanned by the topK eigenvectors
via PCA over common types of contour tokens [23]. For
grouping, we introduce a novel mid-level descriptor that
captures patterns near edges and indicates ownership infor-
mation of the boundary. Experimental results over a subset
of the Berkeley Segmentation Dataset (BSDS) [24] and the
NYU Depth V2 [34] dataset show that our method's per-
formance exceeds current state-of-the-art multi-stage ap-
proaches that use more complex features.

1. Introduction

Look at the two images in Fig.1 with highlighted bound-
aries on the right. These are regions in the image where
objects meet with one another or with the background. Hu-
mans are able to interpret complex scenes such as these and
predict their approximate depth orderings with relative ease
by integrating both bottom-up and top-down cues. In recent
years, so-called boundary detectors have become very pop-
ular tools. These detectors use local cues, such as bright-
ness, color, texture, gradients and simple features [24] in
image patches to distinguish edge points likely at bound-
aries of surfaces from others. More recent approaches also
include globalization processes using long-range relations
of image points [2]. However, the image structure in the re-
gions next to an occlusion edge can be used for more than

Figure 1. Example results of predicted boundaries (blue) and their
ownership (red: foreground, yellow: background) from real-world
images: BSDS (above) and NYU Depth V2 (below). Best viewed
in digital copy.

boundary indication; it also encodes information about the
relative depth about the edge's two adjacent regions, and to
which of the regions the edge belongs to. It has been shown
that image cues, such as the convexity of the edge [19], the
edge junctions, contrast, or the gradient in the intensity and
the texture carry this information [28]. In this paper, we
focus on detecting classes of bottom-up cues that indicate
border ownership, i.e. the information on which side of
a boundary belongs to the foreground/object or the back-
ground, from 2D images. Determining border ownership is
important from a computer vision perspective since it can be
regarded as a preprocessing step for foreground-background
segmentation [32], and is also closely related to selective
attention [4]. From a biological viewpoint, neurophysiolog-
ical �ndings from the visual cortex of macaque monkeys
together with psychophysical experiments also suggest that
the human visual cortex has specialized cells that perform
some form of ownership prediction [36]. These mecha-
nisms have been found in cortical areas V2 and V4 of mon-
keys [38], and they may be receiving feedback from higher
cortical regions [4].
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Fig.1 shows example predictions using our proposed ap-
proach with their accuracy scores over two popular datasets:
the Berkeley Segmentation (BSDS) and the NYU Depth V2
(NYU-Depth) [24, 34]. The prediction accuracy not only
is state-of-the-art, but outperforms previous approaches
[30, 22]. Our method exploits two novel features derived
from �ndings in human psychophysics to determine the
ownership of a boundary. The �rst one, known asextremal
edgesor imagefolds [20], captures how changes in the
shading of pixels near real boundaries differ between fore-
ground and background. It was shown in [29] that such
folds exist in a variety of environments. So far this cue
has not been exploited very ef�ciently for computer vision.
[22] proposed to compute a measure based on the change of
intensity perpendicular to previously detected edge points.
Here we obtain the extremal edge cue from the principal
components of grayscale image patches [18]. In order to
adapt these patches better to the local shape of the edge, we
adopt the framework of Sketch Tokens [23] and learn an or-
thonormal basis for each token class. As we show inx4.2,
the top principal components that we retain encode not only
extremal edges but also more complex structures such as
T-junctions and parallel lines which are equally important
cues for ownership assignment. We then derivespectral
featuresthat capture these local grayscale variations from
the projections of these principle components. Intuitively
spectral features are more important for close-up scenes.
This is con�rmed in our experiments, which show that
the extracted spectral features from the NYU-Depth indoor
dataset with structured lighting are more useful for assign-
ing border ownership than those from the BSDS dataset,
which consists of natural outdoor images.

The second feature detects Gestalt-like groupings of
mid-levelcues. Speci�cally, we introduce a new multi-scale
grouping mechanism that implements the concept of con-
tour closure, and common patterns such as radial and spiral
textures. Since such patterns occur naturally in images, we
expect the differences in the distribution of these patterns to
be indicative of border ownership. Finally, by embedding
these features within a Structured Random Forest (SRF), we
are able to predict border ownership inreal-time, � 0:1s
for a 320� 240 image. Notably, our method predicts both
boundaryand ownership together in a single step. Com-
pared to previous works that considered border ownership
determination as a separate step independent of boundary
detection, our single-step approach is not only faster but
also more accurate.

2. Related Works

Determining border ownership accurately in images in-
volves several related works in computer vision which can
be classi�ed into two different areas: 1) depth ordering pre-
diction and 2) object proposals. We brie�y review each area

in relation to the current work.

Depth ordering prediction. Perceiving ordinal depth
from 2D images has been tackled as early as the classical
“Blocks World” of Roberts [31]. Hoeim et al. [16] revis-
ited the problem by combining numerous local and global
cues: color, gradients, junctions, textures, sky above ground
etc. into a large conditional random �eld (CRF) for recov-
ering occlusion boundaries and depth ordering in a 2D im-
age. The CRF weights were obtained from training data
to ensure consistency of depth across different segments,
which were merged in an iterative process from an initial
over-segmentation. Along similar lines, Saxena et al. [33]
imposed simple geometric constraints to estimate plane pa-
rameters related to the 3D location and orientation of each
image patch to create a 3D pop-out of the image. Ren et al.
[30] considered local convexity and junction cues and inte-
grated them into a CRF to predict border ownership onP b
boundaries [24]. Leichter and Lindenbaum [22] followed
up by computing distributions of ownership cues in ordi-
nal depth: parallelity, image folds, lower-region etc. over
curves, T-junctions and image segments. Stein and Hebert
[35] further imposed motion constraints to detect occlusion
boundaries consistently across video frames.

Object proposals. A recent trend in computer vision is to
detect from an image, object-like regions in the foreground.
Early works [1, 10] combined several “objectness” cues to
train detectors. However, the applicability of such meth-
ods are limited as cue detection and integration is com-
putationally expensive. Recently, Cheng et al. [3] intro-
duced a surprisingly simple technique using binarized gra-
dient norms of images that is able to produce high quality
proposals at a fraction of the time of previous methods. The
Gestalt concept ofclosurehas been exploited by Nishigaki
et al. [25, 37] in detecting object like regions via a mid-level
grouping operator termed “image torque”. Similarly, using
a SRF based structured edge (SE) detector [8], Zitnick et
al. [39] counts the number of contours that enter and exit a
bounding box region to determine if there is enough closure
within the proposed region.

Although many of these works have considered the bor-
der ownership problem implicitly in their problem formu-
lation, it is often considered as an independent pixel-wise
classi�cation step over predicted input boundaries [30, 22]
or segmentations [16, 35]. In order to ensure prediction
consistency over larger scales, CRFs are often used at the
expense of computation time. Our approach, by contrast,
considers border ownership and boundary detection within
a single SRF where consistency over multiple scales are
enforced using structured output labels. Our approach is
therefore self-contained: we predict both boundaries and
border ownership in one single step unlike previous ap-
proaches that require further optimizations using a CRF.
Consequently, our approach affords us to predict border



Figure 2. Border ownership cues used. (Top) Input image and
annotations (red: foreground, blue: background) with example
patches boxed. (Below) (A) Local shape (HoG + gradient magni-
tude) showing four discrete orientations, (B) Spectral features de-
rived via PCA from 20 oriented token clusters (foreground at lower
half) and their principal components with extremal edge cues in
PC2 (boxed) and (C) Gestalt-like grouping target patterns: clo-
sure, radial, spiral and hyperbolic. (D) Corresponding responses
at one scale for each of the features. See text for details.

ownership in real-time.

3. Approach

Our approach of determining border ownership via SRFs
consists of two key components: 1) Features derived from
ownership cues and 2) Imposing border ownership structure
in the SRF. We describe these two components in the sec-
tions that follow.

3.1. Border ownership cues

We use some local cues reported in prior works [30, 22,
28, 26, 13, 9] that were shown to be important in determin-
ing border ownership and some new cues. Speci�cally, we
use: 1) shape (convexity/concavity), 2) image folds or ex-
tremal edges derived from spectral properties of boundary
patches and 3) Gestalt-like grouping features. In addition,
our choice of features was in�uenced by how ef�cient we
can extract them from local patches.

3.1.1 HoG-like descriptors

As reported in several previous works, shape cues such as
local convexity and concavity of contours are important fea-
tures that are indicative of foreground objects: the fore-

ground ownership of a boundary tends to be on the concave
side [26]. To capture this cue within a local patch, we con-
struct a HoG-like descriptor [6] of image gradients where
we quantize the gradient directions into 4 orientation bins.
In addition, we use the gradient magnitude as an indicator
for good boundary localization. The HoG-like descriptor
of gradient orientations captures roughly the local shape of
the patch, while its magnitude tells us how likely this patch
should contain a real boundary. Notably, as shown in Fig.2
(A), we see that the histograms for typical convex and con-
cave patches are different. For ef�ciency, we compute these
features in terms of “channels” [7] per image patch. Given
a patchP of sizeN � N , this results in aN 2 � 5 feature
vector per patch.

3.1.2 Extremal edges from PCA of contour tokens

Extermal edges, or image folds have been known for some
time as one of the strongest border ownership cues [13, 9].
Huggins et al. [17] have shown that extremal edges can be
reliably detected by computing the so-called shadow �ow
�eld in controlled environments. Recently, [29] have shown
that extremal edges exists in natural images by perform-
ing a principal component analysis (PCA) of aligned ori-
ented boundary image patches. Their key insight is that
extremal edges account, after step edges, for most of the
gray-level illumination variance at such regions. Motivated
by this insight, we derived the basis functions using PCA
oriented along so called contour fragments or Sketch To-
kens [23] which are similar to shapemes [30] as shown
in Fig. 2 (B). Since each contour token has an orientation
determined by its foreground and background labels, we
�rst orientate all patches so that the background and fore-
ground occupy the top and bottom halves of the patch (us-
ing the center pixel as a reference) respectively. Clustering
these orientated tokens produces a set ofC token centers to
which we then apply PCA over theS supporting patches,
Pc = f P 1; : : : ; P Sg; c 2 f 1: : : Cg. By applying PCA over
eachPc, we learn a separate orthonormal basis correspond-
ing to each token center. Speci�cally, given theN 2 � S data
matrixX that contains at each column a vectorized (and de-
meaned)P c, we apply Singular Value Decomposition on its
covariance matrix� X to obtain a set of orthonormal basis
spanned by the eigenvectors (columns) ofU :

� X = USU � 1 (1)

where we keep the topK eigenvectors,uk 2 U , corre-
sponding to the topK eigenvalues inS to obtain the projec-
tion matrixW c = [ u1; : : : ; uK ]. W c represents a new basis
that accounts for most of the variance per contour token cen-
ter. As features, we reprojectX to obtainY K � S = W T

c X ,
the coordinates of each patchP c in the new basis. This
yields a feature vector of dimensionsN 2 � K . We show in



Figure 3. Generalizing the image torque for different Gestalt groupings. (Top) By rewriting� ( x;y ) in terms of a scalar product, we are able
to generalize the image torque so that it becomes sensitive to: A) radial, B) spiral and C) hyperbolic patterns. (Bottom) Test toy image with
different target patterns and their maximum responses over different scales. Notice the selective nature for each target pattern.

Fig.2 (D-middle) the spectral features derived from the �rst
four principal components (PC). Of note are the responses
for PC2-PC4 which exhibit a large response only along real
boundaries with positive values encoding foreground own-
ership and negative values encoding background ownership.
In x4.2, we show further that PC2 exhibits the characteris-
tics of extremal edges.

3.1.3 Gestalt-like grouping features

Gestalt psychologists have developed a set of well-known
rules of “Gestalt” that suggests how humans perceive the
world from 2D images. Gestalt rules deal with groupings
of low-level features (e.g. edges), and can be regarded as
a form of mid-levelcue that captures the holistic proper-
ties of individual visual parts. These properties can then
be used to organize these visual parts into more meaning-
ful entities that serve as input to higher level processes: e.g.
segmentation, recognition etc. In this work, we leverage
on speci�c grouping patterns: 1) closure, 2) radial, 3) spi-
ral and 4) hyperbolic (Fig.2 (C)). Such patterns are useful
for border ownership determination because foreground ob-
jects tend to exhibit different grouping patterns compared to
the background [27], and such patterns have been observed
in area V4 of macaques [11]. Closure, one of the strongest
cues used in foreground object proposals tasks, is detected
in this work by computing the image “torque” [25], � P , as-
sociated at each patch (Fig.3 (Top-left)). The image torque
is so-termed because it is analogous to the torque formula-
tion known in physics, which is the cross-product between a
tangential “force” vector~Fq and its corresponding displace-
ment vector~dpq wherep denotes the center pixel inP and
q an edge pixel inP. The image torque for each edge point
q is thus de�ned as� pq = ~Fq � ~dpq. Summing up allq 2 P

and normalizing with the patch size yields� P :

� P =
1

2jN j

X

q2 P

� pq =
1

2jN j

X

q2 P

�
~Fq � ~dpq

�
(2)

In practice, we search over several scaless 2 f 5; 6; � � � ; N g
within P and retain the maximum torque response over all
scales. An alternative derivation for� P is to view the de-
tection of closure patterns as detecting iso-contours corre-
sponding to circles in the image. In general, we consider
the patterns we want to detect as the iso-contours of some
function f . For example circles are the iso-contours of the
functionf (x; y) = x2 + y2. We are interested in the tangent
lines of these iso-contours,g(x; y). Given the 2D gradient
�eld, r f (x; y) = ( f x ; f y ), the corresponding tangent vec-
tors perpendicular to the gradient �eld are thusg(x; y) =
(� f y ; f x ). From the iso-contour equation of circles, it fol-
lows that the closure tangent vectors areg(x; y) = ( � y; x).
Given an input test patchP, we �rst determine its gradi-
ent �eld, denoted asr P(x; y) = ( Px ; Py ); (x; y) 2 P,
and their edges (tangent vectors) asE(x; y) = ( � Py ; Px ).
If a closure pattern exists inE(x; y), then the edges must
align well with tangent vectorsg(x; y). A simple measure
of alignment for a point(x; y) 2 P is thus the scalar prod-
uct betweenE(x; y) andg(x; y):

� (x;y ) = E(x; y) � g(x; y) = ( � Py ; Px ) � (� y; x) (3)

which is equivalent to the de�nition of� pq for point q. Re-
placing� pq in eq. (2) with eq. (3) yields exactly the same
results. The key insight from eq. (3) is that we are now
able to modifyg(x; y) so that eq. (3) is sensitive to differ-
ent patterns in the image. As we show in AppendixA, by
writing different target iso-contour equations, we are able to
detect different Gestalt patterns using the same formulation.



Figure 4. Training a SRF for border ownership assignment. (A) Example image with extracted featuresx f 2 X f and ground truth
annotations from the highlighted patch. We derive an orientation coding,Y, from the annotations. (B) By mappingY to discrete labels, we
determine the optimal split parameters� associated with each split functionh(x f ; � ) that send featuresx f either to the left or right child.
The leaf nodes store a distribution of border ownership structured labels. (C) During inference, a test patch is assigned to a leaf node within
a tree that contains a prediction of the border ownership. Averaging the prediction over allt trees yields the �nal ownership prediction. We
then convert the orientation code into an oriented boundary (blue) that encodes the foreground (red) and background (yellow) predictions.

We show some sample responses using differentg(x; y) in
Fig. 3 (Bottom) for four patterns: closure, radial, spiral and
hyperbolic. For ef�ciency, we have implemented eq. (2) as
a convolution operation so that their responses can be used
directly as features of sizeN 2 � 4 for training the SRF.
Additionally, the responses of the Gestalt features for an
example input image are shown in Fig.2 (D-below). We
note that because the background (e.g. sky) tends to be tex-
tureless, all the features have a small response. Notably, we
observe that the strongest response occurs for the spiral pat-
tern, which is localized in the forested foreground region.

3.2. Border ownership assignment via SRF

We use an extension of the Random Forest (RF) classi-
�er [ 15], termed the Structured Random Forest (SRF). Sim-
ilar to the RF, a SRF is an ensemble learning technique that
combinest decision trees,(T1; � � � ; Tt ), trained over ran-
dom permutations of the data to prevent over�tting. The key
difference is that in general, SRFs are able to learn a map-
ping between inputs of arbitrary complexity (e.g. strings,
segmentations, relationships etc.) and similarly complex
outputs. Due to their �exibility in representation, SRFs have
been used successfully in a variety of computer vision tasks
such as boundary detection [8] and semantic scene segmen-
tation [21]. See [5] for a comprehensive review of RFs and
their applications. In this work, we show that a SRF can
be used as a border ownership classi�er by imposing a spa-
tial border ownership structure in the output labels (Fig.4).
Similar to [8], we assume that only the target output labels
are structured (borders with ownership labels) while the in-
puts are non-structured (feature vectors derived from image
patches).

Let us denote the input asXf composed of features

x f 2 X f derived from a training patchP. The target output
is a structured labelY = ZN � N that contains theorien-
tation coded annotation of the border ownership. Using a
8 way local neighborhood system, this amounts to 8 dif-
ferent possible orientations of border ownership (Fig.4 (A-
bottom)) that each decision tree will predict. The goal of
training a SRF (or a RF in general) is to determine, for
the i th split (internal) node, the parameters� i associated
with a binary split functionh(x f ; � i ) 2 f 0; 1g so that if
h(�) = 1 we sendx f to the left child or to the right child
otherwise. We de�neh(x f ; � i ) to be an indicator function
with � i = ( k; � ) andh(x f ; � i ) = 1[x f (k) < � ], wherek is
the feature dimension corresponding to one of the features
described inx3.1. Following [12], we select at most

p
k

feature elements for evaluation.� is the learned decision
threshold that splits the dataD i � X f � Y at nodei into
DL

i andDR
i for the left and right child nodes respectively.

� is based on maximizing a standard information gain crite-
rion M i :

M i = H (D i ) �
X

o2f L;R g

jD o
i j

jD i j
H (Do

i ) (4)

We use the Gini impurity measure:H (D i ) =
P

y cy (1 �
cy ) with cy denoting the proportion of features inD i with
ownership labely 2 Y . For non-structuredY, computing
eq. (4) is straightforward. In the case of structured labels,
we �rst compute an intermediate mapping� : Y 7! L of
structured labels into discrete labelsl 2 L following [8]
that allows us to compute eq. (4) directly. L is a set of labels
that corresponds to different types of possible contour token
centers (seex3.1.2), and this means that we can reuse the
results from the feature extraction step during training for
added ef�ciency.



The process is repeated with the remaining dataDo; o 2
f L; R g at both child nodes until a terminating criterion is
satis�ed. Common terminating criteria are: 1) maximum
depth of treedt is reached, 2) a minimum inputjDj is
achieved or 3) the gain inM i is too small. The leaf nodes
of each tree after training thus contain the predicted local
ownership orientation decisiony (Fig. 4 (B)). Note that un-
like the RF, where a prediction is performed independently
per pixel, the SRF enforces spatial consistency in the struc-
tured labels at the leaf nodes so that the �nal predictions do
not change too much along boundaries. In order to account
for scale variations, we further sample patches from three
(original, half and double) different resolutions of the input
image. During inference, we sample test patches densely
(at the original resolution) over the entire image and clas-
sify them using allt decision trees in the SRF. The �nal
ownership label at each pixel is determined by averaging
the predicted orientation labels across allt trees, producing
an orientation code that we convert directly into an oriented
boundary representation (Fig.4 (C)).

4. Experiments

4.1. Datasets, baselines and evaluation procedure

We evaluate the performance of border ownership as-
signment over two publicly available datasets containing
real world images: 1) The Berkeley Segmentation Dataset
(BSDS) [24] and 2) The NYU Depth V2 (NYU-Depth)
dataset [34]. For BSDS, we use a separate subset of 200
labeled images (obtained from the training subset of BSDS-
300) that contains ownership annotations. As this dataset
was used by the two baseline approaches: 1) Global-CRF
of Ren et al. [30] and 2) 2.1D-CRF of Leichter and Lin-
denbaum [22], the results we report inx4.3 are directly
comparable. We use the same test/train split as both base-
lines, with 100 images for training and 100 images for test-
ing. The NYU-depth dataset consists of 1449 RGB-Depth
images taken from a variety of indoor environments. The
training set consists of 795 images while the remaining 654
images are used for testing. All images in the dataset are
hand annotated with 1000+ object class labels. Following
[14], we select the top 35 most frequent object labels (ex-
cluding �at surfaces such as walls, �oors and ceilings) in
order to automatically generate a large number of owner-
ship labels along the boundaries of these objects, using the
depth information to produce the ground truth labels for the
entire dataset. Compared to BSDS, where only36:1% of
boundary pixels have ownership annotations, we increase
the annotation density to nearly50%in NYU-Depth. Sev-
eral examples of the input data, ground truths and results
are shown in Fig.5. Full results and videos that show real-
time ownership assignment in cluttered kitchen scenes are
available in the supplementary material.

Notation Description Value
N patch size 16
C number of contour token clusters 20
K principal components used 5
t number of trees 16
dt maximum tree depth 64
Table 1. Parameters used for training the SRF.

We report the same accuracy evaluation metric used in
[30] and [22], where we count the number of correctly clas-
si�ed border ownership pixels against the ground truth. This
is computed via a bipartite graph matching to determine the
closest correspondences between the predicted border own-
ership pixels and the ground truth. Predictions that were
not matched are not considered. Following [22], we set this
threshold to0:75%of the image diagonal. The parameters
used for training the SRF are the same for both datasets and
we summarize them in Table1.

4.2. Comparing spectral components

Figure 6. Top 20 principal components for BSDS (left) and NYU-
Depth (right) for a particular token cluster center. (Bottom row)
Components derived from random patches in each dataset.

Before we present evaluation results of the approach, we
�rst perform an analysis of the spectral components pro-
duced by applying PCA over clustered token patches in both
the indoor (NYU-Depth) and outdoor (BSDS) datasets. We
show in Fig.6 a visual comparison of the top 20 principal
components (PC) obtained from one token cluster center:
horizontal with the background at the top half and the fore-
ground at the lower half of each patch, baselined against
components derived from random patches (bottom row).
In both datasets, we sampled 500,000 patches. We make
four observations. First, the top component (PC1) is the
same for both BSDS and NYU-Depth, which is a step edge.
The second component (PC2, boxed in Fig.6) exhibits the
distinctive signature of extremal edges: with a shading on
the lower-half (foreground) and no shading in the top-half



Figure 5. Example results from both BSDS (left panel) and NYU-Depth (right panel) datasets. Eight results per dataset: (Top-left coun-
terclockwise): images, ground truth labels (red: foreground, blue: background) and ownership prediction (red: foreground, yellow: back-
ground, blue: boundaries). Best viewed in digital copy.

(background). This con�rms the observations made by Ra-
menahalli et al. [29] on the basis of a much smaller num-
ber of images (585), and con�rm that extremal edges are
present across different scenes and environments. Second,
we note that the intensity variation in PC2 from NYU-Depth
appears “smoother” across the foreground region compared
to BSDS. This seems to indicate that extremal edges are
more stable in the indoor NYU-Depth dataset. One possi-
ble explanation would be that the structured lighting in in-
door environments supports the existence of extremal edges
better than the diffused lighting common in outdoor situ-
ations. Third, we note that other ownership cues such as
T-junctions and parallel structures are also captured within
the top PCs of both datasets (e.g. PC6 and PC9). Finally, as
none of the PCs from random patches exhibit the signature
of extremal edges (or other ownership cues), this further
con�rms that the spectral features we use are unique along
true object boundaries.

4.3. Results

We perform a series of quantitative ablation studies over
different features sets in both datasets and compared their
performance with the baselines Global-CRF and 2.1D-CRF
in the BSDS dataset. In a second experiment, we also
applied the basis functions learned from NYU-Depth (in-
door) over the BSDS dataset in order to validate our obser-
vations inx4.2 that the spectral components from the in-
door NYU-Depth scenes are more informative than those
obtained from BSDS (outdoor). The full results are sum-
marized in Table2. We show the contribution for individual
features, as well as the improvements when the feature is

Feature set BSDS NYU-Depth
HoG 72.0% 66.0%
+ Spectral (no contour tokens) 73.1% (72.0%) 67.0% (65.6%)
+ Spectral (contour tokens) 74.0% (72.3%) 68.1% (66.7%)
+ Gestalt patterns 74.4% (72.7%) 68.4% (66.7%)
All features + Spectral (NYU) 74.7% (72.8%) -
Global-CRF [30] 68.9% -
2.1D-CRF [22] 69.1% -

Table 2. Border ownership prediction accuracy for various abla-
tions compared with the baselines (last two rows). `+' denotes the
addition of new features to those above the current row. Numbers
in parenthesis denote the use of the single feature for prediction.

Method BSDS-500 NYU-Depth
Our approach 0.73,0.74,0.76 0.63,0.64,0.60
gPb-owt-ucm [2] 0.73,0.76,0.73 0.63,0.66,0.56
SE [8] 0.73,0.75,0.77(SE-SS) 0.65,0.67,0.65(SE-RGB)

Table 3. Boundary prediction accuracy. The numbers reported in
each cell are [ODS, OIS, AP] following [2]. Results for gPb-owt-
ucm and SE are reproduced from [8].

used with other cues. As a point of reference, we note that
for BSDS, we are classifying over 18,000 pixels, while we
are approaching 2,500,000 pixels for NYU-Depth. Finally,
since our approach predicts boundaries in addition to own-
ership, we evaluate its boundary prediction accuracy in a
third experiment (Table3).

Ablation studies of different features. The �rst four rows
in Table2 summarize the mean accuracy of border owner-
ship assignment when different combinations of feature sets
are used. The general trend is that with more cues used,
the ownership prediction improves for both datasets. We
note that the results con�rm the usefulness of learning sep-



arate basis functions corresponding to different contour to-
ken centers (third row), where there is around1% improve-
ment in accuracy over the case where no contour tokens are
used (second row). For the latter, we simply learned a basis
over 8 ownership orientations. We also show the contribu-
tion of individual features in parenthesis. Of interest is that
Gestalt-like features perform on par with spectral features in
the NYU-Depth dataset while they have a larger individual
in�uence in BSDS. A likely explanation is that most indoor
man-made objects aretexturelesscompared to outdoor en-
vironments. Additional experiments with more controlled
environments have to be done to con�rm this hypothesis.

Applying NYU-depth (indoor) spectral features to BSDS
dataset. In the second experiment, we applied the basis
functions obtained from NYU-Depth to the BSDS dataset.
This results in a slight improvement to72:8%of its individ-
ual contribution. Due to this small degree of improvement,
more experiments with a more careful selection of indoor
patches should be performed to con�rm our hypothesis in
x4.2. Nonetheless, we note that combining NYU-Depth
spectral features with other features yield the best overall
prediction accuracy for BSDS (74:7%) in all experiments.

Comparison with state-of-the-art. The prediction accu-
racy of the proposed SRF border ownership assignment out-
performs previous state-of-the-art results: 1) Global-CRF
and 2) 2.1D-CRF by at least2% even using simple HoG-
like (shape) features in the BSDS dataset. The performance
when all features are combined is even more signi�cant:
> 5% or around 900 pixels that were reclassi�ed correctly.
Compared to 2.1D-CRF with a reported mean run-time of
15s, inference using the SRF is� 100 times faster (0.1s).

Boundary prediction accuracy. Our approach (using
all features) produces reasonableboundary(not ownership)
predictions that are comparable with state-of-the-art bound-
ary detectors: gPb-owt-ucm [2] and structured edges (SE)
[8] when evaluated over the larger BSDS-500 [2] and NYU-
Depth datasets (Table3). Since our approach evaluates test
patches at the original resolution without any depth infor-
mation, we compared the closest variants of SE: SE-SS
(single scale) and SE-RGB (no depth) in BSDS-500 and
NYU-Depth respectively. Ablations of features produce in-
signi�cant deviations from these results, which shows that
the proposed features are more suitable for ownership than
boundary prediction. Furthermore, these results are even
more signi�cant since our approach is trained on a smaller
subset of ownership labels in both datasets.

5. Conclusions

We have presented a fast approach for border ownership
assignment that outperforms two current state-of-the-art ap-
proaches using CRFs. The approach exploits the speed
and �exibility in the representation of Structured Random
Forests so that ownership structure is imposed in the �nal

output labels of each decision tree. We have also devel-
oped novel feature representations that capture perceptually
salient ownership cues: 1) extremal edges and 2) Gestalt-
like groupings. For extremal edges, we �rst learn separate
basis functions clustered at contour token centers to capture
local shape better. Re-projecting the input image into the
new basis produces a set of spectral features in which the
top components capture a variety of ownership cues includ-
ing extremal edges. For detecting Gestalt-like groupings,
we reformulated a recently introduced closure operator (the
image torque) so that it generalizes to a variety of grouping
patterns in the image.

As border ownership assignment is one of the key steps
for depth perception, we plan to extend this work by adding
in more cues: motion, focus, other Gestalt-like groupings
(e.g. symmetry) and higher-level cues for scene understand-
ing (e.g. semantic labels). By making this ef�cient border
ownership assignment code available1, we also provide a
tool to the community that others can explore in tasks such
as segmentation and recognition.

A. Generalizing the image torque to other pat-
terns

Following the notations used inx3.1.3, we write down
the following iso-contour functions for: 1) radialf r (x; y),
2) spiralf s(x; y) and 3) hyperbolicf h (x; y):

f r (x; y) = atan
� y

x

�
) r f r (x; y) =

0

@
yp

x 2 + y2

� xp
x 2 + y2

1

A

f s(x; y) = x2 � ay2 ) r f s(x; y) =
�

x
� ay

�

f h (x; y) = ln(
p

x2 + y2) � a atan
� y

x

�
)

r f h (x; y) =
1

x2 + y2

�
ax � y
x + ay

�

(5)

which leads to the following expressions for the tangent
vectorsg(x; y):

gr (x; y) = ( x; y)

gs(x; y) = ( ax � y; x + ay)

gh (x; y) = ( ay; x)

(6)

for some values ofa = f 1
3 ; 1; 3g. Substituting the corre-

spondingg(x; y) from eq. (6) in eq. (3) enables us to com-
pute the alignment of the target pattern in the image.
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