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Abstract  

Mental rotation concerns the cognitive processes that allow an agent to mentally rotate the image of an object in 

order to solve a given task, for example to say if two objects with different orientations are the same or different. 

Here we present a system-level bio-constrained model, based on neurorobotics, that provides an embodied 

accounts of mental rotation processes relying on neural mechanisms involving motor affordance encoding, motor 

simulation, and the anticipation of the sensory consequences of actions (both visual and proprioceptive). This 

model and methodology are in agreement with the most recent theoretical and empirical research on mental 

rotation. The model was validated through experiments with a simulated humanoid robot (iCub) engaged in 

solving a classical mental rotation test. The results of the test show that the robot is able solve the task and, in 

agreement with data from psychology experiments, it exhibits response times linearly dependent on the angular 

disparity between the objects. This model represents a novel detailed operational account of the brain 

sensorimotor mechanisms that might underlie mental rotation. 
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1 Introduction 

Since it was first described by Shepard and Metzler 

(1971), mental rotation has attracted enormous 

research interest in the field of cognitive psychology. 

This is in part due to the attempts to understand why 

object comparison using imagery seems to obey the 

same physical principles as overt rotation, considering 

that humans are capable of using imagery that is not 

limited by the laws of physics (Kosslyn, 1994). In a 

typical mental rotation task, human participants are 

asked to make a decision on whether two objects 

presented with different rotational orientations are an 

identical or a mirror version of each other. The results 

show that the response times (RTs), as well as the 

errors, of the participants' answers, are highly 

dependent on the angular disparity between the two 

stimuli (Shepard & Metzler, 1971; Wexler, Kosslyn, 

& Berthoz, 1998). In particular, participants show 

RTs that linearly increase with the disparity angle 

between the orientations of the objects. The number 

of errors also increases with the disparity increment. 

The most accredited explanation of these results is 

that the participants might rotate a “mental” image of 

one object until its orientation matches the one of the 

other object (Kosslyn, 1994). Once mentally rotated,  

 

 

the participants can ascertain if the two objects are 

identical or not. 

 Early attempts to explain brain mechanisms 

underlying mental rotation processes relied upon a 

visuo-spatial perception hypothesis (Shepard & 

Metzler, 1971; Corballis & McLaren, 1982). 

According to this view, mental rotation is performed 

on the basis of processes mainly involving the internal 

manipulation of the visual and spatial features of 

objects. This view makes the prediction that these 

processes mainly implicate brain areas underlying 

visual and spatial perception. Contrary to this, recent 

behavioural and neuroscientific evidence indicate also 

an important involvement of motor processes, aside 

the perceptual ones. In this respect, several behavioral 

works show interferences between action planning/ 
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execution and mental rotation processes (Wexler, 

Kosslyn, & Berthoz, 1998; Wohlschläger & 

Wohlschläger, 1998; Wohlschläger, 2001). In a 

typical experiment, participants are asked to perform a 

classical mental rotation task (Shepard & Metzler, 

1971) while performing a manual rotation on a 

custom joystick in both congruent and incongruent 

conditions with respect to the direction of rotation of 

the mental image. The results show that RTs (and 

error rates) are faster (lower) when the direction of the 

two rotations (manual and mental) is congruent, 

whereas they are slower (higher) when they are 

inconsistent (Wexler, Kosslyn, & Berthoz, 1998; 

Wohlschläger, 2001). This supports the idea that 

motor processes play a key role in mental rotation as 

otherwise it would be difficult to explain why the 

production of overt motor actions can interfere with 

mental rotation only when the two are incongruent. 

 Single cell recordings in the monkey's motor cortex 

also supply direct neural evidence for the involvement 

of motor processes in mental rotation (Georgopoulos 

et al. 1989). In humans, a number of neuroscientific 

studies using different research techniques, such as 

transcranial magnetic stimulation (TMS), event-

related potentials (ERPs), and functional magnetic 

resonance imaging (fMRI), show an involvement of 

lateral and medial premotor areas (lateral premotor 

cortex/precentral gyrus and supplementary motor 

area) during mental rotation (Lamm et al. 2007; 

Richter et al. 2000). The fMRI study of Richter and 

colleagues (Richter et al. 2000), for example, shows a 

significant correlation between the hemodynamic 

response in lateral premotor areas with the response 

time of participants involved in the classical Shepard 

and Metzler mental rotation task (Shepard & Metzler, 

1971). This result suggests that mental rotation is an 

imagined (covert) object rotation action rather than an 

image transformation relying exclusively upon visuo-

spatial processing. This claim has been further 

confirmed by other studies (cf. (Wohlschläger, 2001; 

Lamm et al., 2007; Lamm, Fischmeister, & Bauer, 

2005). 

 Importantly, despite these consistent results about 

the involvement of motor processes during mental 

rotation, we still lack a comprehensive hypothesis of 

the specific brain mechanisms involving motor 

simulation that might underlie mental rotation 

processes. One proposal that might help to explain the 

role of premotor areas during mental rotation pivots 

on the concept of affordance (Gibson, 1979) and its 

behavioural manifestations (Tucker & Ellis, 2001), 

brain correlates (Rizzolatti & Craighero, 2004), and 

models (Caligiore et al., 2010; Fagg & Arbib, 1998). 

According to this perspective, affordances are the 

possible actions that objects and the environment 

offer to a certain agent. In particular, the visual 

presentation of objects triggers the activation, within 

the parietal-premotor circuits, of internal 

representations (the representations of affordances) 

needed for the on-line guidance of actions over them 

(Grafton et al., 1997; Grèzes & Decety, 2001). In this 

respect, the activation of affordance representations 

might be involved in the mental rotation processes as 

in brain it plays key role in the first stage of motor 

preparation. 

 Another hypothesis on how motor areas might 

participate in mental rotation comes from the theories 

(Grush, 2004), neuroscientific evidence (Miall, 2003), 

and computational architectures (Wolpert & Kawato, 

1998) on motor control based on forward models. 

This perspective suggests that preparatory/planning 

covert motor processes play a key role in the mental 

simulation and understanding of the environment, and 

involve the same brain motor areas involved in overt 

action execution. This view would suggest that mental 

rotation involves the same motor areas and 

mechanisms used in the physical execution of active 

rotations of objects (e.g., manual rotations), and the 

imagined anticipation of their sensory consequences. 

 So, both views would give important indications on 

the possible involvement of motor areas in mental 

rotation phenomena. However, they would both still 

be limited in that mental rotation is a complex process 

requiring the coordinated operation of several distinct 

elemental cognitive processes. These processes 

include (Lamm et al., 2007): (a) stimulus encoding 

and mental image generation, (b) planning and 

execution of the mental rotation, (c) comparison 

(matching) of the rotated stimulus with the target 

stimulus, and finally (d) execution of the 

same/different response. 

 In this article we propose a system-level 

computational model suggesting a specific operational 

hypothesis on how the information processes taking 

place in brain sensorimotor areas might interplay to 

perform mental rotation. This hypothesis first draws 

ideas from the affordance and forward model view 

introduced above and integrates and specifies them to 

make them applicable to the explanation of mental 

rotation. Second, it introduces some additional 

elements to allow the implementation of not only the 

processes “a-b” indicated above (mental rotation 

proper), but also “c-d” (control and exploitation of 

mental rotation processes). 

 To this purpose, the model leverages on the 

computational model “TRoPICALS” (Caligiore et al., 

2010; Caligiore et al., 2012) developed to study 

affordance compatibility effects (Tucker & Ellis, 

2001). TRoPICALS is a good starting point to design 

a model on mental rotation as it reproduces some key 

functions of the parietal-premotor circuits, crucial for 

stimulus encoding and extraction of object 

affordances (process “a”) and also includes important 

features of the prefrontal-premotor circuit pivotal for 



managing other key aspects of mental rotation 

(processes “c” and “d”). However, it cannot perform 

mental simulations as it lacks the needed feedback 

circuits. In this respect, to address the core mental 

rotation process (process “b”) the model proposed 

here enhances the functions of TRoPICALS by 

developing some key new features. First, it is 

endowed with premotor-parietal feedback loops that 

allow it to implement mental simulation and sensory 

prediction based on forward models. Second, it is 

endowed with enhanced parietal functions for 

encoding somatosensorial information important to 

elaborate anticipated proprioceptive signals. Third, it 

is endowed with an improved visual and motor system 

allowing it to scale up to more realistic 3D 

environments and robotic setups. 

 The rest of the paper is organized as follows. Sec. 

II discusses the main features of the model, the 

learning algorithms used to train it, and the robotic set 

up used validate it. Sec. III presents and discusses the 

results. Finally, Sec. IV drives the conclusions. 

2 Methods 

2.1. The simulated mental rotation 

experiment: participant, stimuli and task  

Figure 1 shows the simulated humanoid robot iCub 

(Tikhanoff et al. 2008) we have used as a participant 

to model psychological experiments on the 

embodiment bases of mental rotation. It replicates the 

same body and control scheme of the real iCub robot 

(Sandini, Metta, & Vernon, 2007), which is an open 

source robotic platform built for studying cognitive 

development in humans. iCub looks like a human 3-5 

years old child, in great part designed to be 

constrained on humans’ body structures and 

movements. Thanks to these features, the iCub 

platform is widely used as benchmark cognitive 

robotics tool in many robotics laboratories (Cangelosi 

& Schlesinger, in press). 

 The iCub simulator provides visual perception via 

simulated cameras and can perform actions 

corresponding to specific motor commands. Each arm 

of the iCub has 16 joints. Here we use the joint 

number 5 of the right arm affecting the robot wrist’s 

angle. If the robot holds an object with the right hand, 

rotating the wrist will change only orientation in the 

object plane. During the mental rotation task the 

model has to compare two visual stimuli having 

different orientation. 

 The stimuli are colored in red to make easier their 

detection by the iCub camera. The edge detection 

method is used as an early visual processing stage. 

The image is centred on a single object, and the red 

color filter is applied. The edges of the object are 

extracted with the Canny edge detection technique 

(Canny, 1986), using the OpenCV library. The output 

from the edge detection process is converted as 

activation level to the neural network, input units at 

the beginning of the simulation. The left object is 

considered to be the target stimulus, whereas the right 

one represents the current stimulus which has to be 

mentally rotated (left stimulus to PP, right stimulus to 

PFC_1, see figure 2). The eyes’ position of the iCub is 

fixed, with the object centered on the fovea 

throughout the experiment. Regarding the motor 

response, the iCub’s wrist angle can rotate in the 

range of [-90°; 90°]. Counter-clockwise orientations 

are indicated by positive values, while clockwise 

orientations are indicated by negative values. 

 

 

Figure 1.  The iCub simulator, its environment and a 

sample pair of stimuli. 

 During the experiment pairs of target-current 

object images having different orientations are used. 

The objects are displayed in the space in front of iCub 

(Figure 1). For the training, the rotation of the 

comparison object is varied by 30° per pair, so that 

each stimulus could assume seven orientations (-90°, -

60°, -30°, 0°, 30°, 60°, 90°). During the process of 

affordance training, only one stimulus is shown in the 

left position, with the experimenter varying the 

orientation of the object and assigning a 

corresponding target position for the robot's wrist 

angle. In the testing session, two stimuli are displayed 

in the left and in the right positions. In each trial, the 

rotation of the left image is systematically varied, 

while the right one is presented with several degrees 

orientations. 

 After training, the generalization ability of the 

model is tested using 196 pairs of stimuli, which are 

supplied in sequence to the model. The experiment 

has been repeated 10 times to test the consistency of 

the model. Each time the pair of stimuli is changed, 

the model internally rotates the left stimulus to match 

with the right one and produce an answer. Three types 

of information are recorded during the experiment: 

the response times (RTs) which is the result of a 

neural dynamical competition (see sec. 2.2.2 and cf. 

(Caligiore et al., 2010; Erlhagen & Schöner, 2002); 

the answer for the current mental rotation task (see 



sec. 2.2.2); the successful degree of rotation (the 

maximum number of rotation cycles is set to 10, as in 

some cases the model cannot rotate the image to a 

preferred orientation at the first cycle, thus requiring 

extra rotations). When the number of rotation cycles 

is equal to 10, it indicates that the model cannot 

correctly perform the mental image rotation of the left 

stimulus and will be forced to do the next step 

(matching process) by using the last image. 

2.2. Neural architecture, simulated mental 

rotation, learning phase  

2.2.1 Neural Architecture 

The neural network model (Figure 2) proposed in this 

article suggests an operational hypothesis about the 

interplay of the visual and motor neural processes 

during mental rotation. To accomplish this aim it 

extends some features of the TRoPICALS model 

(Caligiore et al., 2010). The architecture of the model 

is shown on Figure 2. It consists of four main parts 

corresponding to specific areas of the brain mainly 

involved during mental rotation tasks (Lamm et al., 

2007; Richter et al., 2000): the parietal cortex (PC), 

the premotor cortex (PMC), the prefrontal cortex 

(PFC), and the primary motor cortex (M1). 

 These cortical areas are constituted by neural maps 

activated using population code methods (Pouget, 

Dayan, & Zemel, 2003). The population code theory 

claims that information (e.g., on stimuli and actions) 

is encoded in the brain on the basis of the activation 

of populations of neurons organized in neural maps 

having a broad response field. In particular, each 

neuron responds maximally to a certain value of the 

variables to encode, and then progressively less 

intensely to values (based on a Gaussian function). 

 PC is formed by two distinct areas: the posterior-

parietal cortex (PP) and the somato-sensory cortex 

(SS). The neurons of the PP map (32 x 32 neurons) 

encode the shape and the orientation of the object that 

has to be mentally rotated (Rizzolatti & Craighero, 

2004). The neurons of the SS map (31 x 100 neurons) 

elaborate the proprioceptive signal related to the robot 

wrist orientation (Caligiore et al., 2010). The PMC 

region is formed by 2 neural maps PMC_1 (31 x 100 

neurons) and PMC_2 (10 x 20 neurons), encoding 

motor programs related to different arm parts 

(Rizzolatti & Craighero, 2004). PMC_1 neurons 

encode the wrist posture of the robot corresponding to 

the object orientation encoded in PP. PMC_2 neurons 

encode the hand posture that the robot produces to 

accomplish the mental rotation results (i.e. to indicate 

if two objects are same or different). The PFC also 

consists of 2 maps, respectively implementing the 

working memory (PFC_1, 32 x 32 neurons) and the 

matching process area (PFC_2, 64 x 64 neurons) 

(Fuster, 2001). 

 
 

 
Figure 2. The model of mental image rotation. Each box represents the model’s components. The arrows represent information 

flows from one component to another. The arrows accompanied by the letter “C” are the connections learned by SOM learning rule 

(dash-dot arrows) or by Hebbian learning rule (solid thick arrows). 



 The visual input for the model is the image of a 

simulated camera of one of the eyes of a simulated iCub 

robot. The edge information for the object on the left is 

passed to the PP, while the one for the “target object” on 

the right is for the PFC_1. The target object is used as a 

reference for rotational purposes. The robot has to 

mentally rotate the object encoded by PP to check if it is 

the same or it is different with respect to the target object 

stored within PFC_1. PFC_1 supplies also a bias signal to 

PMC_1 to lead the full activation (with a level of neural 

activation of 1.0) of one affordance among the elicited 

ones so transforming it into the representation of a 

desired wrist posture. This cluster represents the desired 

posture that the robot has to (mentally) reach to make a 

mental rotation useful to overlap the image within PP 

with the target image within PFC_1. PFC_2 is the core 

for the matching process. It is formed by a Kohonen self-

organizing map (SOM) (Kohonen, 1997) which takes 

inputs from the PP and PFC_1. At the end of the 

matching process, PFC_2 neurons trigger PMC_2 

activation whose neurons in turn encode the answering 

behaviour. 

 M1 consists of two areas M1_1 and M1_2. M1_1 is a 

SOM map (64 x 64 neurons) responsible for encoding a 

combination of current posture (from SS) and desired 

orientation (from PMC_1). The neural activation of 

M1_1 is used as input from SS during the mental rotation 

process (see below) as well as to trigger a wrist rotation 

through M1_2. This is a neural array formed by three 

(clusters of) neurons (N1, N2, N3). The activation of N1 

causes a 30° clockwise rotation of the wrist; the 

activation of N3 causes a 30° counter-clockwise rotation 

of the wrist; the activation of N2 does not lead any 

rotation of the wrist. 

2.2.2 The mental rotation process simulated by the 

model 

This section briefly summarizes how the model 

reproduces the mental rotation processes. The follows 

points refer to the model functioning after the learning 

phase. 

 Affordances pre-activation (C1). The left object image 

encoded by PP neurons pre-activates all the possible 

object affordances within PMC_1 (wrist postures for a 

given object) at the same time. Since one object could 

assume 7 different orientations, we have 7 different 

clusters of neurons pre-activated within PMC_1. The 

affordances pre-activation mimics the preparatory 

processes for actions present when people see an object. 

 Affordances selection (C6). PFC_1 supplies a bias 

signal to PMC_1 to lead the full activation (with a level 

of neural activation of 1.0) of one affordance among the 

elicited ones so transforming it into the representation of 

a desired wrist posture. This cluster represents the desired 

posture that the robot has to (mentally) reach to make a 

mental rotation useful to overlap the image within PP 

with the target image within PFC_1. 

 Mental rotation by the forward model and by the 

proprioceptive signal (C7, C8 and after this C10, C2). 

The desired wrist posture (encoded by PMC_1) and the 

current wrist posture (encoded by the SS) are combined 

within M1_1 (C7, C8). The SOM cluster within M1_1 

works as a forward model with respect to SS evoking a 

Gaussian cluster within SS corresponding to the next 

wrist posture (C10). The SS map is also activated by 

current proprioceptive signal due to the wrist movement. 

The overall cluster within SS activates the new rotated 

image within PP (C2) causing a mental rotation. 

 In line with empirical evidence (Chu & Kita, 2008; 

Chu & Kita, 2011) the current proprioceptive signal 

affects the mental rotation processes as the overall 

activation of SS depends by both the signal from the 

forward model (C10) as well as by the current wrist 

proprioceptive signal (Figure 2). We assume that 

attention mechanisms might drive the system to be more 

focused on the mental rotation task rather than to the 

effect of its wrist movements. The effect of this attention 

focus is simulated by considering (within SS) the signal 

from the current proprioception weaker than the signal 

from the forward model. 

2.2.3 Learning process 

Connections between maps are trained using Hebbian 

learning and SOM competitive learning which are widely 

accepted as a biologically plausible learning mechanism 

mainly involving cortical areas (Doya, 2000). The 

specific Hebbian learning method used in this model is 

the Oja rule (Oja, 1982), a Hebbian like equation that 

solves the problem of the basic Hebb rule causing a 

weights growing without bound. The equations used to 

implement the Hebbian learning process are as follows: 
 

∆wij   =   η ai (aj - wij);   w(t)ij  =   w(t-1)ij  +  ∆wij       (1) 

where ∆wij denotes the weight's change from neuron i to 

neuron j, ai and aj denote activation potential of neuron i 

and j respectively, η denotes the learning rate which is set 

to 0.15, and w(t)ij is a weight value at a particular time 

step. The SOM learning rule has been implemented using 

the follow equation: 
 

w(t)i  =   w(t-1)i  +  Θ(t-1) i η(t-1) i (v(t-1) i -w(t-1 ) i)  (2) 

where w(t)i  denotes current weight value of neuron i at 

time t, w(t-1)i  denotes an old weight value of the neuron 

i,  Θ denotes the amount of influence on distance between 

neuron i and the best matching neuron in a map, η 

denotes the learning rate which is set to 0.15. Note that, 

Θ and η decrease over time. The Table 1 shows the 

parameters used for learning of the various connections. 

  

 

 



Table 1. The parameters used in the network. 

Connection Type number of patterns Training cycles Type of output 

C1 Hebb 14 84 Cluster of activity 

C2 Hebb 14 84 Image 

C3 & C4 Kohonen 98 10,000 Cluster of activity 

C5 Hebb 196 1,176 Cluster of activity 

C6 Hebb 14 84 Cluster of activity 

C7 & C8 Kohonen 196 10,000 Cluster of activity 

C9 Hebb 98 1,960 Cluster of activity 

C10 Hebb 98 1,960 Cluster of activity 

 

 Now we describe the training phases leading the 

model to perform the mental rotation task. The learning 

of the sensory-motor mapping (C7, C8, C9) and of the 

forward model (C10, C2) is accomplished at the 

beginning of the robot life. The aim of the sensory-motor 

learning phase is to obtain the values of the connection 

weights between SS-M1_1, between PMC_1-M1_1 and 

between M1_1-M1_2, useful to get a wrist rotation 

(encoded by M1_2) driving the current wrist posture 

(encoded by SS) towards the desired wrist posture 

(encoded by PMC_1). 

 The learning phase pivots on the follows “motor 

babbling procedure”: (a) the robot assumes a random 

wrist posture within [-90°, 90°], which is encoded by a 

Gaussian cluster within SS; (b) the random generator 

randomly decides the direction of rotation (DR) and the 

number of rotations (NR). For example, if DR = 1 and 

NR = 3 the robot has to clockwise rotate its wrist of 90° 

(3 x 30°). DR = 1 causes the activation of the neuron N1 

of M1_2. NR = 3 implies that N1 is activated for three 

sequential steps. We assume that “one time step” is the 

time the robot needs to rotate its wrist of 30°; (c) the 

value of the wrist rotation is used to compute the total 

rotation (in this case 3 x 30° = 90°) and, based on the 

current posture, it is used to activate the PMC_1 map as a 

possible desired wrist posture; (d) PP neurons encode the 

current object orientation; (e) at the end of each step the 

Kohonen rule (2) is used to update the connection values 

(C7, C8) in order to obtain different cluster within the 

M1_1 representing all the combinations of the desired 

final wrist posture (PMC_1) and the current wrist posture 

(SS); (e) aside the SOM M1_1, at the end of each step we 

also train the forward model (C10, C2). Each SOM 

cluster (M1_1) is associated by the Hebbian rule (1) with 

the following wrist posture cluster (SS) which is in turn 

associated by (1) with the corresponding object 

orientation (PP) (this corresponds to perform a rotation 

with an object in the hand and associating the felt 

proprioception with the seen object image); (f) at the end 

each step the clusters activated within the SOM M1_1 are 

associated to M1_2 activated neuron (C9) using (1). The 

use of the SOM M1_1 is necessary to learn all the 

possible combinations between current posture (SS), 

desired posture (PMC_1), and control signal (M1_2). 

Overall there are 7 possible desired postured encoded in 

PMC_1 and 7 x 14 possible combinations to be encoded 

in M1_1. 

 

 Learning the affordances pre-activation (C1). The 

training pattern is constituted by 2 series of rotating 

images which are 30 degrees different per step. Each 

image is loaded in the PP area as activity level of a set of 

neurons in the map. The aim of the training process is to 

create a mapping between the input image (PP) and all 

the possible wrist posture of the robot encoded by cluster 

of activities (Gaussian tuning curve) within PMC_1. 

Importantly, the signal from PP pre-activates the clusters 

within PMC_1 with a value of 0.2 (the pre-activation is 

easily obtained by opportunely setting the max value of 

the PP-PMC_1 connection weights). This means that the 

object pre-activates several affordances (and not only 

one). The signal from PFC_1 allows the full activation, 

and hence the selection, of one cluster (one affordance) 

according the organism's goal (in our case the goal is 

given by the target image within PFC_1) (cf. Sec. 2.2). 

The training process is implemented using the Hebbian 

learning rule (1). 

 Learning the affordances selection (C6). The training 

pattern is formed by 2 series of rotating images which are 

15° different per step. Each image is loaded into a PFC_1 

map as activity level of a set of neurons in the map. An 

important difference with respect to the pre-activation of 

affordances training phase discussed above, is that here 

the aim of the training process is to create a mapping (by 

the Hebbian rule (1)) between specific target image 

(PFC_1) and specific wrist posture of the robot encoded 

by clusters of activities (Gaussian tuning curve) within 

PMC_1. In this way the signal from PP pre-activates 

within PMC_1 all the possible affordances (i.e. the 7 

possible desirable wrist postures) related to the seen 

object, whereas the signal from PFC_1 supplies the 

crucial bias signal to select the desired wrist posture 

related to the target object. 

 Learning the matching and the answering processes 

(C3, C4, C5). The connections from PP and PFC_1 to 

SOM PFC_2 (C3, C4) are responsible for the matching 

process. When the network generates a mental image in 

the PP, having the same degrees rotation of the target 

image encoded by PFC_1, then the process of learning is 

triggered. The connections link two maps, one is PFC_1 

(target image), which is set at the beginning of the 

simulation, and another is PP (the mental image). A 

training set for PFC_2 is a combination of all the possible 

neural representations for the stimuli of each input. A 

neural activity in PFC_2 forms a salient cluster with 



respect to the two specific inputs. As there are 14 

possible images in each map, four 196 clusters will be 

formed. To train PFC_2 has been used the SOM learning 

rule (2). The PFC_2 SOM map is trained in advanced. In 

this way, a response of PMC_2 can be fixed for each 

input couple from PP and PFC_1.  

 The answer triggering process uses the connection C5 

from PFC_2 to PMC_2. When two images are “similar” 

the robot chooses the “YES” answer, otherwise it chooses 

the “NO” answer. The term “similar” means “it is 

approximately the same”. The mental rotation ends when 

the position of cluster of activity in M1_2 is close to the 

stand still position (N2). The most salient cluster in 

PFC_2 is used to produce the answer. Given the 196 

possible combinations of inputs in the matching process, 

half of them are responsible for a "SAME" answer, while 

the remaining half for the "MIRROR" answer. Therefore, 

98 regions in PFC_2 with respect to the same image from 

the PP and PFC_1 cause one cluster in PMC_2. While 98 

other regions within PFC_2 represent different images of 

the two input maps. In this process, PMC_2 is 

responsible for the answer triggering, the motor response 

to press two answer buttons or to produce some utterance 

such as “YES” or “NO”. In the current version of the 

model this motor command is still not used to supply a 

control signal for the iCub but is directly interpreted as 

the response of the system. 

 After learning, an action potential of each neuron in 

the PMC_2 map is calculated by using a dynamic 

competition method (Erlhagen & Schöner, 2002). As the 

connections within a neural map are based on an all-to-all 

pattern, each neuron in the map sends/receives signals 

to/from every neuron. The dynamic competition process 

causes dynamic activities within the map, based on a 

distance between neurons following the rule of long-

range inhibition and short-range excitation. Neighbouring 

neurons which are activates with high potential will 

receive excitatory signals and tend to form clusters of 

activity. In contrast, neurons which are far from the 

active neuron in the neural space will receive an 

inhibition signal and their action potential will be 

depressed. 

 The dynamic competition is also used as a method to 

calculate an agent’s response time (RT), e.g. to compare 

the model results with reaction time data in psychology 

experiments. Unlike a simple feed-forward process in 

layered neural networks, the dynamic competition 

process will be repeated until the action potential of at 

least one neuron in the neural map reaches a specific 

threshold. This process can be used to calculate the 

response time based on the action potential of an 

individual neuron that is most sensitive to a particular 

input. In detail, the number of repeating dynamic 

competition processes was recorded and used as 

simulated response time. One cycle of repeating the 

process will be assumed to be equal to 1 millisecond 

(Caligiore et al., 2010). 

3 Results 

The two stimuli of the simulated mental rotation task can 

be varied in seven angular positions in the range [-90°; 

90°] with a step of 30°. Therefore the maximum angular 

disparity between the two stimuli is 180° and requires six 

rotational steps to mentally overlap the left stimulus to 

the target one. When the number of rotation cycles is 

equal to 10, it indicates that the model cannot correctly 

perform the mental image rotation of the left stimulus and 

will be forced to do the next step (matching process) by 

using the last image; the answer for the current mental 

rotation task (see sec. 2.1). 

 Figure 3(a) shows the mental rotation steps (PP) and 

the matching (PFC_2) and answering (PMC_2) processes 

for a successful trial. In this example the mental rotation 

process takes 5 steps to rotate an image of a stimulus in -

60° to an image of stimulus in 90°, both stimuli are 

object-A. The mental rotation process ends when the 

rotated image reaches 90° orientation. After that, the 

matching process within PFC_2 is performed by using as 

input the neural activity of target image in PFC_1, and 

the rotated image in PP. The neural activation 

representing the matching process within PFC_2 is 

showed in the third column of the last row on Figure 3(a). 

The answering process of PMC_2, is indicated in the 

fourth column of the last row on figure 3a. The cluster of 

activity formed in the left side of the map will cause the 

answer "YES" to be chosen. The blank panels indicated 

that the rotational steps needed in this sample are less 

than 10. 

 In contrast, Figure 3(b) shows one case in which the 

model cannot rotate the left stimulus of 0° into the 60° 

position as the target stimulus. The model fails to rotate 

the image within 10 cycles, and has to do the matching 

process by using the last (un-rotated) image in PP. This 

scheme is similar to a guessing process in human subjects 

when the time to do mental rotation task is over. The 

model fails to rotate the image after 10 cycles: each 

cycle, the image in the PC is changed but cannot goes to 

be the preferred image. This case might be caused by a 

mismatch cluster in SS that is also caused by noisy 

cluster's position of M1_1. As indicates by the panel 

encoding, mental-0, and target in Figure 3(b), the 

direction of rotation is incorrect. 

 Possible failures in rotation and response of the model 

mainly come from the map M1_1 and connection C9 and 

C10. Because there are too many possible patterns to 

train these connections a cluster of active neurons in 

M1_1 might be overlapped in a position of clusters from 

other patterns and that overlapped might generate 

incorrect or noisy outputs. This feature of the model 



simulates the error response often found in human 

subjects. 

 
(a) 

 
(b) 

 

Figure 3. Mental image rotation steps. Where (a) indicates 

rotational steps in the case that the model is able to create a 

series of image changes to reach the target orientation; (b) the 

model is unable to rotate the seen object. The matching and 

answering processes are represented by the neural activation of 

the two bottom right side maps respectively. 

 

 After testing the model with all possible pairs of 

stimuli used in the training set, the model achieve 97.95% 

(192 out of 196) successful rate of rotation of the left 

stimulus to match with the target. The overall percentage 

of correct response (answer triggering) is 85.7% (168 out 

of 196). 

 As indicated by RTs profiles showed in Figure 4(a), 

when the angular disparity is high, the required cycle of 

rotation and RTs also increase. The angular disparity (x-

axis) is calculated by using the difference in orientation 

between the two stimuli. The 0° disparity is calculated 

from the left stimulus orientation that is the same as the 

right one but can be from the different type of object. As 

indicates by the RTs profile, there is no significantly 

effect from the different types of object that are used in 

rotation and comparison process. 

 There are three types of errors that have been 

generated by uncontrolled situations within the model. 

The first is from the situation that the model cannot rotate 

the left stimulus to match with the right one within 10 

rotational cycles. An error from this case will cause 

higher response time than normal cases, and also the 

cause of incorrect response. Secondly, as the connection 

from SS to PP underlies a forward model, a possible 

positioning error in SS directly effects a mental image in 

PP. Therefore, it raises the issue of successful rotation by 

accidence. In detail, when active neurons in M1_1 cause 

an incorrect cluster in SS, by chance, it might be a cluster 

that causes an image of the target of a given task. And 

then the model stops rotational processes. In this case, the 

number of rotation will be less than usual which effects 

response times and also might causes an incorrect 

answer. Lastly, even the model can correctly and 

successfully rotate the left stimulus of a given task, but 

the answer might not be always correct. The first two 

errors are caused by neuron activity within the map M1_1 

while the last error is from the map PFC_2. 

 

 
(a) 

 
(b) 

 

Figure 4. The comparison of response time profiles. Where 

panel (a) indicates the difference of response time profile 

between different pairs of stimuli (b) shows the difference 

between supplied a match/mismatch of proprioceptive signal to 

SS. Label AA in the panel (a) denotes that the left stimulus is 

object-A and compare with the target that is object-A, while 

AB, BA, and BB are used to denote each specific line in the 

graph by the same meaning as AA. 



 The proprioceptive signal has been simulated by using 

the current wrist's angle of the robot. A specific cluster in 

SS is involved according to the wrist's angle. This process 

acts as a cluster pre-activation for the map SS. When the 

position of the pre-active cluster and of the cluster caused 

by M1_1 are the same or overlapped, it should support 

the rotational processes and the response times will be 

reduced which means the model could do rotation faster. 

In contrast, if they are difference, the dynamic 

competition processes should take a longer time to 

activate the most salient neuron within a map. The match 

situation between the current wrist's angle and the felt 

proprioception (SS clusters) is simply simulated by 

activating the overlapping clusters as described above. 

On the other end, the mismatch situation is caused by the 

chance activation of a cluster in SS (using random 

number generator to choose a specific cluster). The 

response time profiles in Figure 4(b) indicate the 

difference between proprioceptive signal match and 

mismatched with the felt proprioception for object's 

orientation. 

4 Conclusion 

The neurorobotics model proposed in this paper accounts 

for the mental rotation processes based on neural 

mechanisms involving visual imagery, affordance 

encoding and forward models processing. In this respect, 

the proposed approach is in agreement with the most 

recent theoretical and empirical research on mental 

rotation (Lamm et al., 2007).  

 Importantly, in addition to replicating the typical 

mental rotation data, the model is able to account for 

other data which link overt movements and mental 

rotations (Wohlschläger & Wohlschläger, 1998; 

Wohlschläger, 2001) (cf. Introduction). This recent 

empirical evidence claims that the performance of mental 

rotation tasks can be improved by the assistance of hand 

movements, or gestures called “co-thought gestures” 

(Chu & Kita, 2008; Chu & Kita, 2011). Spontaneous 

gestures during the performance of mental rotation 

provide a rich sensorimotor experience to the solving 

strategy in human subjects. Gestures improve the internal 

representation of a spatial transformation of objects. 

Following this hypothesis, the proposed model includes 

proprioceptive units that act as an internal representation 

of wrist movements, which directly affect the mental 

rotation process within the parietal-premotor circuit. 

Interestingly, the model suggests an operational 

hypothesis on how the covert mental rotation neural 

mechanisms pivoting of forward model circuit and overt 

movements might be combined to affect mental rotation. 

 The model is validated within the simulated humanoid 

robot iCub engaged in solving a mental rotation tasks. 

The provides a demonstration that the integration of 

mental rotation capabilities with the affordance and 

embodiment processes (developed in the motor babbling 

training phase) leads to the successful performance of 

mental rotation task. 

 This sets the basis for ongoing work on the extension of 

this model for investigating the role of co-thought 

gestures (Chu & Kita, 2008; Chu & Kita, 2011) to 

support mental rotation tasks, as well as other cognitive 

capabilities as for communicative gesture use and 

language learning. 

 Future extension of this model will also look at the use 

of a variety of objects for mental rotation. The current 

model can only process and rotate the objects of the 

training set. To permit the rotation of unseen objects, the 

object orientation mechanisms will be separated by the 

object identity function, e.g. using an inferotemporal 

cortex (IT) map whose neurons encode objects 

independently of their orientation. 

 Overall the proposed neurorobotic model of mental 

rotation provides a useful computational framework to 

study the integration between mental rotation capabilities 

and embodied cognition, to demonstrate the role of motor 

processes and affordance in mental simulation task. 
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