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ABSTRACT
In this paper we propose an autoencoder-based method for the
unsupervised identification of subword units. We experiment
with different types and architectures of autoencoders to asses
what autoencoder properties are most important for this task.
We first show that the encoded representation of speech pro-
duced by standard autencoders is more effective than Gaus-
sian posteriorgrams in a spoken query classification task. Fi-
nally we evaluate the subword inventories produced by the
proposed method both in terms of classification accuracy in a
word classification task (with lexicon size up to 263 words)
and in terms of consistency between subword transcription of
different word examples of a same word type. The evaluation
is carried out on Italian and American English datasets.

Index Terms— unsupervised acoustic modeling, auto-
encoders, deep learning

1. INTRODUCTION

The minimal linguistic resources needed to learn the acoustic
models of a standard ASR system consist of a pronunciation
lexicon and the phonetic transcription of the speech training
data. A desirable additional resource is labeled bootstrap data.
If we had a system able to identify the phonetic structure of
the training speech data and extract an inventory of subword
units in a fully unsupervised fashion we could efficiently rec-
ognize words or perform other kinds of task (e.g., keyword
spotting) on speech of any language or accent where pronun-
ciation lexicons and transcribed speech data are limited or do
not exist. The impact of such a system is even more evident
if we consider that ASR systems often fail to achieve a rea-
sonable recognition accuracy when training and testing con-
ditions are mismatched, even when adaptation techniques are
applied [1]. Most of the previous work in automatic genera-
tion of subword units is based on Gaussian Mixture Models
(GMMs). In this paper we propose an alternative strategy
based on autoencoder neural networks (AE) [2].

If we are able to generate an inventory of subword units
and want to convert speech into orthographic words, includ-
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ing words that are not in the training speech dataset, we need
to learn a mapping between graphemes and subwords. That
can be accomplished if a part of the training speech data is
orthographically transcribed. For this mapping to be success-
fully learned (from few transcriptions) the subword units must
produce pronunciation models that are ”consistent”, i.e., sub-
word sequences representing instances of a same word type
should be identical (if there is no pronunciation variation) or
mostly identical, and discriminative(i.e., a one-subword in-
ventory is 100% consistent but cannot discriminate words).
Finally subwords must be well identifiable given the acous-
tic observations, i.e. they should allow good acoustic models.
The latter property may affect subword consistency, with poor
identifiability resulting in low consistency.

For unsupervised learning of subword units AEs are an
interesting alternative to the more popular GMMs in that (i)
AEs are generally better than GMMs in discovering the hid-
den structure of data [3]; (ii) it is straightforward to insert
some weak prior knowledge in their training algorithm (see
our segmental AE in section 3) or to modify it to make them
robust to noise [4];(iii) by piling up AEs one can easily build
deep architectures to capture increasingly complex features.
Finally, through AEs we can describe phonetic states as bun-
dles of binary features, a distributed description that interest-
ingly recalls the phonological theory of Distinctive Features
[5] and allows to explore novel strategies for unsupervised
acoustic modeling.

2. RELATED WORK

Different approaches to subword unit generation based on
Hidden Markov Models and GMMs have been proposed for
various tasks ranging from keyword spotting to large vocabu-
lary speech recognition [6, 7, 8, 9, 10, 11].

In [8] speech fragments are clustered into unspecified
word/phrase types through an unsupervised spoken term dis-
covery procedure [8]. The resulting word types are then
modeled using HMMs where the number of states depends
on the average length of their instances. The final inventory
of subwords is created by clustering HMM states across word
models. This approach depends on the accuracy of the spo-
ken term discovery algorithm while our method does not need



any preliminary spoken term discovery and no assumption is
made about the number of subwords per word.

In [9, 10] the unsupervised acoustic modeling problem is
divided into three sub-tasks: segmentation, segment cluster-
ing and acoustic modeling of the clusters. In [10] the three
sub-tasks are carried out at once using a Dirichlet Process
mixture model. While an indication of the consistency of
the obtained clusters/subwords is given by observing co-
occurrence of subword units and phones, here we propose
an explicit measure of consistency where no assumption is
made on what type of subword (e.g., phoneme, syllable) our
subwords should resemble to. Contrary to [8, 10] we test the
discriminative power of the generated subwords by model-
ing words as subword transcriptions rather than as subword
posteriorgrams.

In [11] consistency and discriminative power of sub-
word units are implicitly evaluated in a speaker-dependent
phone recognition task where phone sequences are computed
through a subword-to-phone transducer and subwords are
generated by iteratively splitting an initial single-state HMM.

To the best of our knowledge there are no previous studies
on the use of AE neural networks for the automatic identifi-
cation of subword units. Multi-layer AE have been typically
used to extract new features (typically referred to as bottle-
neck features) for supervised ASR (e.g., [12]).

Single-layer AEs and Restricted Boltzmann Machines
(RBMs) are typically the basic components used to build
Deep Learning architectures [2]. Deep Learning architec-
tures have been claimed to be able to identify the phonetic
structure of speech. In [13, 14] nodes of the topmost layers
of deep networks (stacked sparse AEs with a particular kind
of activation function and Deep Boltzmann Machines respec-
tively) exhibit the main acoustic properties of some phones
suggesting that these architectures can be effective in the
unsupervised generation of a complete inventory of subword
units.

3. AUTOENCODERS

An AE consists of an encoder and a decoder part. The en-
coder maps an input vector x into an hidden/encoding repre-
sentation z:

z = fθ(x) = s(Wx + b) (1)

where W is a weight matrix, b a bias vector and s is typically
the logistic sigmoid function.

The decoder maps back the hidden vector h to a ”recon-
structed” input y:

y = gθ′(h) = l(W′h + b′) (2)

If the input data is assumed to be Gaussian distributed,
as in the present work, l is typically an identity function and
the AE is trained (through backpropagation) to minimize the
squared error ||x− y||2.

A simple variant of the standard AE is the denoising AE
[4] where the training input to the AE is transformed in x̃
by corrupting the input while the training objective is kept
unaltered (||x−y||2). For Gaussian distributed input the input
is corrupted by adding Gaussian noise. The expectation is that
the corruption of the input will force the AE to capture the
most stable and relevant dependencies between input features
and make the AE more robust to noise.

Here we propose a second variant (segmental AE) where
a randomly selected subset of training input vectors are sub-
stituted by the vectors that immediately follow them (i.e., xt

is transformed into x̃t = xt+1). The working assumption is
that two consecutive vectors in most cases fall within the same
phonetic unit so that the substitution we apply will force the
AE to learn dependencies that most characterize that phonetic
unit and remove the phonetically irrelevant differences.

Usually deep AEs are built by ’stacking’ single-layer AEs.
However we discovered that the deep AEs described in [15]
produced better results in our experiments. We directly create
multi-layered AEs (e.g. a 60-10-60 neural net, where num-
bers indicate the number of nodes of each of the 3 hidden lay-
ers and the middle layer with 10 nodes is the encoding layer)
and train them.

Before backpropagation training, all AEs were pre-trained
by applying RMB pre-training [15].

4. SUBWORD UNIT GENERATION

Our approach to subword unit generation consists of the fol-
lowing steps:

1. ’Encoder posteriors’. After AE training, each speech
frame ft is represented as a vector of values of encoding
nodes e(t) = [e

(t)
1 , ..., e

(t)
i , ..., e

(t)
E ] where E is the number of

encoding nodes. Such values can be seen as the probabilities
of the encoding nodes to activate (i.e., to have value = 1). We
call them ”encoder posteriors”.

2. Encoding node binarization. We then binarize the
ei values. The binarization produces C = 2E possible con-
figurations/states. Each speech frame can now be assigned
an encoding state b(t) = [b

(t)
1 , ..., b

(t)
i , ..., b

(t)
E ] (where b

(t)
i is

the binarization of e(t)i ). The binarization requires activation
thresholds in order to set to 1 all values above the threshold
and to 0 all the lower values. We set the threshold of each
encoding node to its mean value.

3. State modeling. Subsequently we group together all
the frames belonging to the same encoding state and compute
the average (i.e., the average encoder posteriors of each state)
mk = 1

|Ck|
∑
t∈Ck

et where Ck is the set of frames associ-
ated to the kth state.

4. State clustering. If the number of encoding states is
> 64 (i.e., if E > 6) we collapse states having similar average
encoder posteriors using a simple k-means with number of
clusters set to K = 64. We then recompute the state means



mk. The final set of states is our (1-state) subword inventory.
5. Word/utterance modeling. We could now represent

each training and testing utterance using the bt representa-
tion and then transform the frame-level subword sequences
into atemporal sequences, i.e., transcriptions. However such
approach would ignore the sequential nature of speech and
the risk of having (long) transcriptions of a same word/phrase
type that are largely inconsistent because of ’quick’ state tran-
sitions at the frame level (e.g., 12− 12− 3− 12− 12) due to
poor subword acoustic modeling or noise. Here we propose a
strategy to smooth those state transitions.

We build HMM models for each training utterance by first
computing the ’subword posteriors’ q(t) = [q

(t)
1 , ..., q

(t)
i , ..., q

(t)
K ]

of each frame :

q
(t)
i = 1−

√∑E
j=1(e

(t)
j −mi,j)2/E∑K

k=1

√∑E
j=1(e

(t)
j −mk,j)2/E

(3)

Each q
(t)
i is in the [0 1] range and

∑K
i=1(q

(t)
i ) = 1.

Once we have the ’subword posteriors’ we create the ma-
trix of subword transition probabilities Tu for each training
utterance. Only self-transitions (Tu(i, i)) and transitions to
the next state (Tu(i, i + 1)) are allowed. Tu(i, i) = Tu(j, j)
and Tu(i, i+ 1) = Tu(j, j + 1) for any i and j and Tu(i, i) +
Tu(i, i + 1) = 1. That means that the transition matrix is
regulated by one single transition penalty parameter, tP =
Tu(i, i)/Tu(i, i + 1), which affects the expected dwell time.

If we divide the q(t)’s by the subword priors we can then
model an utterance as a linear HMM. Finally the scaled q(t)’s
and the transition matrix (weighted by tP/K) are fed into
a Viterbi decoder that outputs the best frame-level subword
sequence that we then map into the atemporal sequence, i.e.
transcription. Finally the HMM model is refined by using the
new subword sequence.

6. Subword acoustic re-modeling. The previous step re-
assigns a subword label to each training data frame. We could
then recompute the mk of each subword and then transcribe
again each utterance and repeat until a convergence criterion
is reached. Instead we refine the ei estimation by training
a classifier to directly assign subword probabilities to each
speech frame. This classifier (in this study a 3 hidden-layer
60-60-60 Deep Neural Network (DNN) classifier which takes
as input 1 MFSCs vector) was used to improve the posterior
estimation on the test data, but could be used to improve the
training utterance models in an iterative procedure.

Note that by increasing E the number of subwords (2E)
can quickly become intractable. This problem could be easily
solved if we consider that the number of subwords cannot be
larger than the number of training data frames. Alternatively
we could train AEs with much larger E and then directly clus-
ter frames with similar state posterior vectors into a subword.
Such approach produces worse results (see Results).

7. Adding weak supervision (optional). So far the algo-
rithm is entirely unsupervised. We also experimented with a

weakly supervised version of it where the training word ex-
amples are given a word label (type). Such information is
used to build one single model per word type. We run force
alignment on all word examples using the model of a word ex-
ample and compute the average probability. We repeat using
the models of all the remaining word examples. The model
with the largest average probability is selected as the model
of the word type.

5. DATASETS AND EXPERIMENTAL SETUP

Datasets. We used 3 datasets, one extracted from the Italian
Lecce dataset [16] and 2 from the TIMIT corpus [17].

All the utterances of the Lecce corpus are single-word ut-
terances. The vocabulary consists of 73 words + 65 pseudo-
words. Several word pairs are minimal pairs. The training set
contains at most 4 examples of the same word type (with ei-
ther affirmative or interrogative intonation) for an overall 832
single-word utterances spoken by 4 different female speak-
ers. The test data contains 1 or 2 (when there is an interroga-
tive instance) examples of each word type for an overall 208
single-word utterances spoken by a fifth speaker.

The two TIMIT subsets consists of all content words ut-
tered by female speakers that have at least 4 or 3 examples
in the training TIMIT set respectively and 1 in the testing set.
The first subset (cv4-1) consists of 162 word types and 810
word examples, the second dataset (cv3-1) of 263 word types
and 1052 word examples.

AE training. The acoustic input to the AEs was a 60 (20
+ ∆ + ∆∆) mel-scaled filterbank coefficients (MSFCs) vector
extracted from speech signal previously segmented into 25 ms
Hamming windows sampled every 10 ms. The input variables
were normalized to have 0 mean and 1 standard deviation.

Evaluation measures. Our method was evaluated in a
word classification task. When the word label was provided
during training (weak supervision) each word type was rep-
resented by a single model, whereas in the fully unsuper-
vised setting a word type was represented by the model of
one of its word examples (drawn from the set of its examples)
. Each testing example was assigned the word type whose
model scored highest when force-aligning it. In the fully un-
supervised setting the final word classification accuracy is the
average of four different accuracies (to take into account the
random selection of examples per word type).

The consistency of the transcriptions was assessed by
computing the average Levenshtein distance between sub-
word transcriptions of all training word examples of the same
word type.

6. RESULTS

GMM vs. AE. Before presenting the main results we provide
an empirical motivation to use AEs for unsupervised acoustic



modeling. Table 1 shows that encoder posteriorgrams out-
perform GMM posteriorgrams in a spoken query classifica-
tion task similar to that described in [8]. Training and testing
words are represented as either GMM or encoder posterior-
grams and word pair similarity is computed using Dynamic
Time Warping (with cosine distance). Each test word exam-
ple is assigned the word type of the training word example
most similar to it. Both GMMs and AEs have 32 hidden vari-
ables. AEs are trained on MFSC vectors while GMMs are
trained on MFCCs.

Lecce Timit cv4-1 Timit cv3-1

GMMs 64.9 56.2 57.0
Standard autoencoder 72.1 61.7 63.9

Table 1. GMM Posteriograms vs. AE Posteriorgrams. Clas-
sification accuracies in a spoken query classification task.

Subword Generation. Table 2 shows the transcription
consistency error (CErr) and classification accuracies on the
Timit subsets produced by different subword generation sys-
tems (with tP = 1). UAcc is the accuracy of the entirely un-
supervised approach whereas SAcc is the accuracy obtained
when training word labels are given.

Standard, denoising and segmental AEs produced similar
results with the latter two often producing higher accuracy at
close CErr values (see Figure 1). A larger number of encod-
ing nodes produces significantly larger classification accuracy
and lower consistency error (e.g., compare 6-node and 16-
node encoding layers) while deeper architectures do not seem
to produce significant improvements.

Only in the ”Segmental + DNN class” case we applied the
subword posterior remodeling (step 6 in the subword gener-
ation) which always produced higher classification accuracy
and lower transcription consistency error.

Comparing results on Timit cv4-1 and cv3-1 we see that
although the classification task in cv3-1 is more difficult (as
the number of word classes is larger) the classification accu-
racies are almost identical (although CErr is slightly larger in
cv3-1). That is most probably due to the fact that in cv3-1 the
AEs are trained on a larger dataset. This is an encouraging re-
sult as all our AEs were trained on small datasets (compared
to previous work), much larger datasets may produced much
better results.

Finally we compared our systems with a fully supervised
hybrid DNN-HMM method where the phonetic label of each
frame was given (through Expectation Maximization in the
Lecce dataset, or manual annotation in TIMIT) and the phone
posteriors were computed by the same kind of DNN clas-
sifier used for subword acoustic remodeling. The CErr of
the supervised method was computed by running the DNN-
based phone classifier on all training speech frames and then
transforming the frame-level transcription into (atemporal)
phone transcriptions. The SAcc difference between the unsu-
pervised and the supervised approach is larger in the TIMIT

AE Type /
Hlayers

Timit cv4-1 (cv3-1)
System CErr SAcc UAcc

Standard 6 13.0 29 25.3
Denoising 6 13.1 31.4 27.2
Segmental 6 13.4 34.6 22.8
Denoising 16 12.0 43.8 37.7
Segmental 16 12.1 42.0 36.4
Denoising∗ 32 12.0 41.4 33.3
Segmental 60-16 12 (13.4) 45.7 (44.9) 37.0 (38.7)
Segmental 60-60-16 12.5 (13.5) 43.8 (44.5) 36.9 (36.5)

Segmental +
60-60-16 10.7 (12.3) 49.4 (47.5) -

DNN class
Phonemes - 6.7 (7.2) 70.9 (70.7) -

Table 2. Transcription consistency error (CErr) and word
classification accuracies (UAcc and SAcc) produced by dif-
ferent subword generation systems in the 2 TIMIT subsets.
Hlayer indicates the structure of the AE, e.g., a 60-16 AE has
2 hidden layers in the encoding part and 16 is the number
of encoding nodes. Denoising∗ AE is the alternative method
commented at the end of step 6 of section 4.

Fig. 1. Consistency error (green line) and word classification
accuracy (red line) (in the Lecce dataset) of three systems as
a function of the transition penalty value, the parameter af-
fecting the expected dwell time.

datasets (see Table 2) than in the Lecce dataset (not shown,
SAcc of best unsupervised system = 63.9, SAcc of supervised
system = 77.4). The CErr of the best unsupervised systems
may seem large when considered as an absolute value but
notable when compared to that of the supervised system.

Figure 1 shows that the transition penalty value tP can be
used to trade-off the transcription consistency error and the
classification accuracy.

7. CONCLUSIONS

We have presented a strategy based on autoencoders to iden-
tify subword units in an unsupervised setting. The subword
inventory generated by our approach may produce consistent
word transcriptions and good acoustic models. Results are
extremely encouraging and we expect to improve them by re-
fining some partly unexplored aspects of our method and by
experimenting with larger unsupervised training datasets.
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