
A novel approach to dynamic movement imitation
based on quadratic programming

Carlos Cardoso1, Lorenzo Jamone1, Alexandre Bernardino1

Abstract— This paper proposes a novel approach to generate
trajectories that generalize given demonstrations according to
optimality criteria. By formulating the problem as a quadratic
program we can efficiently incorporate constraints to adapt to
new desired motion requirements while achieving the main goal
of matching the acceleration profile of the demonstration. This
makes our method particularly suited for the imitation and
generalization of trajectories such as hitting movements, where
it is crucial to maintain the dynamic traits of the demonstration
while respecting strict requirements for the goals position, veloc-
ity and time. Our method draws inspiration from the Dynam-
ical Movement Primitives (DMPs) framework, preserving its
desirable properties of flexibility and rejection of disturbances
during execution. Moreover, it offers an higher degree of control
on the generated solution, allowing for example i) to limit the
instantaneous positions, velocities and accelerations during the
whole trajectory, and ii) to add intermediate way points that
were not present in the demonstration. With current state-of-
the-art solvers of quadratic programs, a problem with hundreds
of parameters can be solved in tens of milliseconds in a standard
computer, allowing practical applications. Our methodology
results in trajectories with a very good approximation of the
shape traits of the demonstration, with additional flexibility in
specifying constraints of the generated trajectory.

I. INTRODUCTION AND RELATED WORK

Modern robots are expected to operate alongside humans,
performing complex tasks in unstructured environments,
showing flexibility, adaptability and generalization capabil-
ities. Given the diversity of situations faced by the robot,
that cannot be fully pre-determined, learning techniques are
going to play a major role to equip robots with complex
motor skills and behaviors [1].
One practical way to allow robots to learn motor skills
is through the ”programming by demonstration” paradigm
[2], [3], [4], also known as ”learning by demonstration” or
”imitation learning”. The main idea is that a motor skill (i.e.
the trajectory of a movement) is demonstrated to the robot
(typically through kinesthetic teaching [5], [6]), and a general
representation of the movement (i.e. a movement primitive)
is learned from the recorded data. Using such representation
the robot can replicate the demonstrated motion under dif-
ferent conditions, e.g. with a different starting or ending

*This work was partially supported by the European Commission
under the POETICON++ (FP7-ICT-288382) and LIMOMAN (PIEF-
GA-2013-628315) projects, and by the Portuguese Science Foundation
FCT projects AHA (CMUP-ERI/HCI/0046/2013), BIOMORPH (EXPL/EEI
AUT/2175/2013) and LARSyS (UID/EEA/5009/2013).

1Carlos Cardoso, Lorenzo Jamone and Alexandre Bernardino
are with the Institute for Systems and Robotics, Instituto
Superior Técnico, Universidade de Lisboa, Lisbon, Por-
tugal carlos.cardoso@tecnico.ulisboa.pt
{ljamone,alex}@isr.ist.utl.pt

Fig. 1. A screenshot of the robotic arm in the Gazebo simulator, while
performing a ball hitting task.

position, thus showing not only the ability to learn from a
human teacher, but also to generalize and adapt what has
been learned to different situations. Moreover, the learned
primitive can be progressively refined through practice, using
for example Reinforcement Learning (RL) techniques [7].
One key issue is therefore to find a proper representation
for such movement primitives. A number of solutions have
been proposed during the last decade, resorting for instance
to neural networks [8], probabilistic estimation [9] and many
other techniques. One of the most promising approaches
draws from the theory of dynamical systems, giving raise
to solutions such as Stable Estimator of Dynamical Sys-
tems (SEDS [10]), sequenced Linear Dynamical Systems
[11], Implicit Dynamical Systems [12] and, most notably,
Dynamic Movement Primitives (DMPs [13], [14]). This latter
formulation in particular has proven to be a very effective
tool for imitation learning, and has been therefore widely
used in robotics and inspired many extensions to add velocity
goals [15], [16] and allow uncertainty and way-points in the
execution [17]. However, the DMPs approach still has a few
drawbacks. One is that, despite allowing quick adaptation to
new start/end positions, it may generate undesired motion
profiles (especially in terms of accelerations) that are not
under full control. Another one is that it lacks the possibility
to impose constraints in the motion, such as joints position
and velocity limits.

In this paper we propose an alternative solution in which
imitation is formulated as a global optimization problem,
thus allowing a much higher degree of control on the
trajectory that imitates the demonstration. More specifically,
the optimization procedure aims at finding the trajectory that
imitates the acceleration profile of the demonstration best,

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 906

given the different conditions in which the movement has to
be executed - e.g. with different starting and ending positions
and velocities. Moreover, by formulating the problem this
way, a number of additional constraints can be easily added,
allowing for instance to comply with joint limits (positions,
velocities, accelerations, etc.) over the whole trajectory, or to
add way-points that were not in the original demonstration.
To the best of our knowledge, such features are not present
in DMP formulations that generalize a single demonstration.
We perform an experimental evaluation in which we compare
our proposed method to a state-of-the-art DMP method.
We provide a demonstration (joint space trajectories) that
corresponds to a ball hitting movement performed by a 6dof
robotic arm holding a tennis racket, simulated in the Gazebo
[18] simulation environment (see Fig. 1). Then we adapt such
demonstration to different execution conditions, comparing
the two methods. More specifically, we show i) adaptation
to different initial/final states and movement duration, ii)
inclusion of joint limits, iii) addition of intermediate way-
points and iv) robustness to noise and disturbances.
The remainder of the paper is organized as follows. In
Section II we summarize the DMP framework, highlighting
the main pros and cons, and in Section III we propose our
alternative solution based on global optimization. Then in
Section IV we presents our experimental results, and finally
in Section V we report our conclusions.

II. IMITATION WITH DMPS

As previously introduced, Dynamic Movement Primitive
(DMP) is a widely adopted formalism to represent motor
actions in a way that allows flexible adjustment without
custom parameter tuning. After a primitive is learned from
a demonstration (or a series of demonstrations) it can then
be generalized to different initial and goal states while
maintaining its overall shape. The original DMPs have two
formulations, one for discrete movements and another for
periodic motion [19]. In this paper we focus on the discrete
formalization, that is needed to represent point-to-point tasks.

A. Original Formulation

The DMP system controls the motion of a scalar variable y
through a point attractor g that makes the trajectory converge
asymptotically to the goal and a nonlinear forcing term f
that encodes the characteristics of the demonstration. The
two terms are coupled by a canonical system z that acts as
a replacement of time.

τ2ÿ = αy(βy(g − y)− v) + f(z, g)

τ ẏ = v τ ż = −αzz
(1)

The gains αy , βy are chosen to make the 2nd order system
critically damped, ie. βy = αy/4. The temporal scaling term
τ allows the primitive to execute the movement faster or
slower while preserving its shape.

Let us consider a demonstrated trajectory as d(t). The
objective of learning a DMP is to compute an approximation
of f such that the observed profile of the trajectory is as
close as possible to the demonstration. Rewriting the first

equation of (1) and replacing the motion variable y by the
demonstration d we have:

ftarget(z, g) = τ2d̈− αy(βy(g − d)− τ ḋ) (2)

This term can be represented by a normalized linear
combination of Gaussian basis functions [14], as follows:

ftarget(z, g) =

∑N
i=1 ψi(z)wi∑N
i=1 ψi(z)

ξ(z, g)

ψi(z) = exp(− 1

2σ2
i

(z − ci)2)

ξ(z, g) = z(g − y(0))

(3)

The Gaussian basis functions ψi have centers ci along
the exponential of the Canonical system so that they are
equally spaced in time. The scaling term ξ(z, g) makes the
accelerations converge to zero near the goal and to normalize
their values according to the amplitude of the movement.

The weights wi can be learned from the samples of the
original demonstration at sample times zp, p ∈ {0, · · · , P},
using for example Locally Weighted Regression [13]:

wi =
sTΓiftarget
sTΓis

(4)

where

s =
[
ξ(z0) . . . ξ(zP)

]T
ftarget =

[
ftarget(z0, g) . . . ftarget(zP , g)

]T
Γi =

 ψi(z0) . . . 0

0
. . . 0

0 . . . ψi(zP)

 (5)

The canonical system has αz > 0 so that it converges
asymptotically to zero. This ensures that, if the weights
are bounded, the forcing function’s interference eventually
vanishes as the movement ends, ensuring that the point
attractor is free to converge to the goal. The initial value
of z is usually set to 1 but any positive value can be chosen.

B. Hitting Movements using DMPs

For some situations such as striking a moving ball and
throwing darts it is necessary to adapt to an end goal with
a desired final velocity vf , different from zero. A DMP
formulation that adapts to goals with velocity was proposed
by Kober et. al [15]. The proposed system used a shifting
goal with linear velocity. This system however had some
drawbacks: First, fast changes of the goal position and
velocity lead to error in the final velocity. Second, when
the final and starting position are close to each other the
system generates large accelerations. To overcome these
shortcomings Mulling et al [16] proposed an improved
system, which is defined as follows:

τ v̇ = αy(βy(g − y) + ġτ − v) + g̈τ2 + ηf(z)

τ ẏ = v
(6)

907

Here the goal follows a polynomial that starts and ends
with zero accelerations and the correct starting and final
position and velocity, computed as:

g =

5∑
j=0

bj

(
−τ ln(z)

αz

)j

ġ =

5∑
j=1

jbj(−τ
ln(z)

αz
)j−1

g̈ =

5∑
j=2

(j2 − j)bj(−τ
ln(z)

αz
)j−2

(7)
The 5th order polynomial coefficients are found by setting

the boundary conditions such that it has the desired initial
and final positions and velocities. The accelerations are set
to zero at the start and at the end of the movement.

III. QUADRATIC OPTIMIZATION FOR MOTION
PRIMITIVES

The approach in Mulling et al [16], implemented through
(6) and (7), achieves the final goal position and velocity
with accuracy. However, the polynomial trajectory is com-
puted independently of the demonstrated trajectory and may
lead to accelerations profiles significantly different from
the demonstration. Moreover, the acceleration vanishes at
the end of the movement. This distorts the demonstrated
trajectory at the most important phase in hitting movements.
To have a greater control on the resulting trajectory profiles,
we formulate the problem as a convex quadratic program
(QP). The imitation problem is addressed by computing
the trajectory that best imitates the acceleration profile of
the demonstration while constrained to start and end at
specific positions and velocities. Additional constraints can
be incorporated, for instance via-points and limits in the
joint positions, velocities or accelerations during the whole
movement trajectory.

A. Formulation

We use a dynamical system as (6), but instead of having
separate reference trajectory and forcing terms, we generate
a single desired trajectory directly taking all constraints into
account (imitation of the demonstration, initial and final
states, joint limits, waypoints) and plug it into a reference
tracking dynamical system. This is no longer a DMP but still
ensures robustness to noise and perturbations.
To compute the desired trajectory we use a Gaussian kernel
expansion as in the DMPs forcing term (3). Let g(t), t ∈
[t0, tf] denote the desired trajectory to be executed between
t0 and tf . Its acceleration is represented as:

g̈(t) =

N∑
i=1

wiψi(t) (8)

The Gaussian basis functions ψi(t) are the same ones used
for DMPs but time warped to fit the desired time interval.
Since we do not need a canonical system with exponential
decay, we can have the basis functions spaced linearly in
time and with constant width. The expression for the ψi(t)
is the same as in (3), but now the input is time t instead of

phase z, and centers ci and variance σ are shifted and warped
according to the transformation from the demonstration time
interval to the imitation time interval.

The desired trajectory position and velocity can be ob-
tained by integration:

ġ(t) = v0 +

N∑
i=1

wiψ
′

i(t)

g(t) = p0 + (t− t0)v0 +

N∑
i=1

wiψ
′′

i (t)

(9)

where 1

ψ
′

i(t) =

∫ t

t0

ψi(τ)dτ ψ
′′

i (t) =

∫ t

t0

ψ
′

i(τ)dτ

Given a demonstration d(t) and the desired initial
and final times, positions and velocities, respectively
(t0, p0, v0, tf , pf , vf), the optimization problem is thus
written as:

minimize
wi

∫ tf

t0

(
N∑
i=1

wiψi(t)− τ2d̈(t)

)2

dt

subject to p0 + (tf − t0)v0 +

N∑
i=1

wiψ
′′

i (tf) = pf

v0 +

N∑
i=1

wiψ
′

i(tf) = vf

(10)

where τ is the time scale due to different durations of the
demonstration and imitation.

After the trajectory is computed, it can be used as a
shifting goal in the acceleration-based controller:

ÿ = αy(βy(g − y) + ġ − v) + g̈

ẏ = v
(11)

The time scaling factor is included directly in the solution
of the minimization problem. Every time a trajectory has to
be computed, the new ψi(t) terms are recomputed to cover
the desired time span, so it is no longer necessary to scale
by τ in the dynamic system.

Note that the computed trajectory plays the role of both
the forcing term and the shifting goal. Because the trajectory
already incorporates the imitation, there is no need to use two
different entities to implement the dynamical controller.

B. Solution
To solve the optimization problem we rearrange (10) as a

quadratic program (QP) with linear constraints in standard
form. Then, any existing modern QP solver can be used to
obtain the result.

Expanding the cost function in (10) and defining ψij =∫
ψij(t), θj =

∫
ψj(t)d̈(t) and D2 =

∫
d̈2(t) we get2:

1The cumulative functions ψ
′
i(t) and ψ

′′
i (t) are, in practice, approxi-

mated by numerical integration.
2In practice the terms ψij and θj are approximated by numerical

integration

908

J =

∫
dt

 N∑
j=1

wjψj(t)− τ2d̈(t)

2

=

J =

N∑
j=1

N∑
i=1

wijψij − 2τ2
N∑
j=1

wjθj + τ4D2

where wij = wiwj , ψij(t) = ψi(t)ψj(t) and the integrals
are between t0 and tf .

Because the last term does not depend on the wi’s it can
be left out of the optimization cost J . Therefore, representing
in matrix form we get:

J = wT Ψw − 2τ2wTθ (12)

where

w =
[
w1 . . . wn

]T
θ =

[
θ1 . . . θN

]T
Ψ =

 ψ11 . . . ψ1N

...
. . .

...
ψN1 . . . ψNN

 (13)

The constraints of (10) can be written as:

wTψ
′′

(tf) = pf − p0 − (tf − t0)v0

wTψ
′
(tf) = vf − v0

(14)

where

ψ
′′

(tf) =

 ψ
′′

1 (tf)
...

ψ
′′

N (tf)

 ψ
′
(tf) =

 ψ
′

1(tf)
...

ψ
′

N (tf)


(15)

Now we can write (10) in standard QP form:

minimize
x

1

2
wT 2Ψw + τ2θTw

subject to(
ψ

′′
(tf)

ψ
′
(tf)

)
w =

(
pf − p0 − (tf − t0)v0

vf − v0

) (16)

These values can be used in a standard QP solver. For
adapting to new targets only pf , p0, vf , v0 and Ψ change in
the resulting QP. The basis functions Ψ must be recomputed
for changes in the final time. The θ vector, obtained from
the original demonstration remains unchanged and does not
have to be recalculated. This vector therefore is the invariant
that defines the primitive.

The minimization must be solved each time we want to
execute a new motor action. However existing QP solvers
can find a solution very fast. If we are controlling an arm
with many DOF’s, solving for each individual DOF is an
intrinsically parallel problem and a solution can be found in
the same time as with only one primitive given there is an
execution thread available for each DOF.

Additional constraints can also be added to ensure that
joint accelerations, velocities and positions are bounded

within safe physical limits. For a discretization of the time
interval at instants ti the following constrains can be added:

q̈min ≤ wTψ(ti) ≤ q̈max

q̇min ≤ v0 + wTψ
′
(ti) ≤ q̇max

qmin ≤ p0 + (ti − t0)v0 + wTψ
′′

(ti) ≤ qmax

(17)

However this requires adding 6 constraints for each sample
and may increase the computation time. In our case the
problem is still solved in the order of tenths of a second
for trajectories with 1000 points.

IV. EXPERIMENTAL RESULTS

To test our proposed method we generated a ball hitting
movement with our 6dofs arm (see Fig. 1), defined in joints
space, to serve as a demonstration for both a DMP with
polynomial shifting goal (the system proposed in [16]) and
for our QP formulation. We use a python implementation
with the default CVXOPT solver to optimize our QP. The
choice of an optimal solver remains an open task. For both
the DMP and the QP we use Euler integration with a 0.001s
time step. After the sample that corresponds to the final time
both the DMP and the QP accelerations are set to zero.
We performed three different experiments (Sections IV-A,
IV-B and IV-C) that consisted in adapting the demonstrated
motion to different execution conditions, comparing our QP
method to DMP. Moreover, we discuss how some important
features of the DMP approach are also preserved, namely
the rejection of noise and disturbances during execution
(Section IV-D). Finally, we discuss how both approaches
deal with noise in the demonstration (Section IV-E). Each
experiment shows one useful feature of our proposed method.
For the sake of clarity we present these results in separated
experiments, but in a real application all features can be
used simultaneouly. Due to space constraints in the plots
we display only the trajectory of one joint of our 6dof arm,
but results for the other joints are analogous.

A. Adaptation to different initial/final states and movement
duration

Both the DMP and the QP allow adapting the demon-
strated primitive to new initial and final states composed of
position, velocity and time. As it can be seen in Fig. 2 the
DMP and the QP generate similar trajectories. However, the
QP distributes the acceleration difference evenly throughout
the trajectory. This allows a more accurate replication of the
demonstrated movement shape, especially near the end of
the trajectory. The non-zero final accelerations may increase
the velocity error at the final instant. When a precise final
velocity is critical to the task a new constraint can be added
to switch off accelerations at a predetermined final fraction
of the trajectory.

B. Inclusion of joint limits

Taking into account the physical limits of the joints is
of crucial importance in practical operations, as every robot
has position, velocities and acceleration limits that cannot be

909

0 1

−2

−1

0

1

2

time [s]

(a) Angle
[rad]

0 1

time [s]

(b) Velocity
[rad/s] ∗ 101

demo scaled demo DMP QP
0 1

time [s]

(c) Acceleration
[rad/s2] ∗ 102

Fig. 2. Trajectory generated by adapting the demonstration to a different
initial position and a different final velocity. The final time is set to be at
0.8s instead of the 1.0s of the demonstration. The movement generated by
the global optimization (without additional constraints) imitates the shape
of the demonstration better, especially in the final part of the motion.

0 1
−4

−3

−2

−1

0

1

2

time [s]

(a) Angle
[rad]

0 1

time [s]

(b) Velocity
[rad/s] ∗ 101

limit demo DMP QP
0 1

time [s]

(c) Acceleration
[rad/s2] ∗ 102

Fig. 3. Trajectory generation with joint limits. Here the joint limits were
added as constraints in the QP. The position has a physical limit at ±2.0rad.
To adapt to a ney end goal (vf = 10rad.s−1, pf = −1.0rad) the QP can
take the limits and a safety margin into account to generate a good imitation
while a DMP generates an infeasible trajectory.

violated. Moreover, in some specific cases there might be the
need for setting limits that are more conservative than the
maximum, nominal ones; therefore, it is extremely helpful
to have the possibility of changing these limits on-the-fly,
depending on the task requirements, without the overall
shape of the movement being deviated too much from the
demonstration. As shown in Fig. 3, with the DMP formula-
tion the adaptation to new goals can generate trajectories that
violate joint limits (even if the demonstration was bounded).
Conversely, with our approach these limits can be included
as constraints of the QP by adding inequalities in Equation
17. The results in Fig. 3 show that our proposed method
can generate a trajectory that is feasible and still a good
approximation of the original demonstration.

C. Addition of intermediate way-points

The flexibility of the QP formulation permits adding
new constraints to fit the specific demands of the task.
An interesting possibility is adding intermediate way-points
while trying to maintain the shape of the movement. The
way-points can be added in the same way as the final goal
but at an intermediate time; they can be defined as a specific
position and velocity occurring at a desired time instant.
Among many, one practical application could be to perform

0 1
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

time [s]

(a) Angle
[rad]

0 1

time [s]

(b) Velocity
[rad/s] ∗ 101

demo DMP QP waypoint
0 1

time [s]

(c) Acceleration
[rad/s2] ∗ 102

Fig. 4. Intermediate way-points can be added to a trajectory in the same
way as the final goal. Here a waypoint is specified with pwaypoint =
1.0rad and vwaypoint = 1.0rad.s−1 at time t = 0.5s. The possibility
of adding way-points while following the shape of a single primitive does
not exist with the previous formulations of DMPs.

obstacle avoidance while keeping the demonstrated shape
of the movement. Fig. 4 shows how the QP formulation
allows to generate a trajectory with the same initial and
final position of the demonstration, but with a different way-
point in the middle; notably, the shape of the trajectory
highly resembles the demonstrated one. Although a small
discontinuity in the acceleration profile seems to occur near
to the way-point, this can be mitigated by adding a jerk
limiting constraint in the QP problem. Moreover, since the
discontinuity happens only after the way-point and the rest
of the movement is smooth, if way-points are sufficiently
spaced in time the resulting trajectory is not jerky and can
be executed with precision.

D. Rejection of noise and disturbances

The acceleration based controller of the DMP (see equa-
tion 11) is stable when following a polynomial goal [16]. In
our case we are following an arbitrary reference instead of
a polynomial: after transients, the system acts as an all-pass
filter and does not diverge when given bounded inputs.
We performed an experiment in which we introduced i) noise
in the sensory measurements (positions and velocities) and
ii) a step disturbance in the acceleration, which can simulate
for example the presence of an unexpected load. The plots in
Fig. 5 show how the controller is able to reject the noise and
recover the desired trajectory when the disturbance vanishes.

E. Effect of noise in the demonstration

The demonstration of a movement usually consists of
a position signal, that is then differentiated to obtain the
acceleration profile. The noise in the position signal is
amplified by differentiation and may result in a very noisy
acceleration profile unsuitable for imitation.
DMPs use the demonstrated position and velocity in addition
to the acceleration for learning the forcing term. This helps to
mitigate the jerky motion caused by noise in the acceleration.
Our QP system looses some of the high frequency noise
content by representing the demonstrated accelerations as
Gaussian Basis functions, however if the position signal is
very noisy the stored demonstration will still have very high

910

0 1

−2

−1

0

1

2

time [s]

(a) Angle
[rad]

0 1

time [s]

(b) Velocity
[rad/s] ∗ 101

demo DMP QP
0 1

time [s]

(c) Acceleration
[rad/s2] ∗ 102

Fig. 5. The QP is disturbed by adding 1% noise in the velocity and position
sensor measurements, and by adding an acceleration of 100 rad/s2 during
t = [0.1, 0.3] [s]. The system manages to reject the noise and recovers
from the disturbance accurately reaching the position and velocity goal.

0 1

−2

−1

0

1

2

time [s]

(a) Angle
[rad]

0 1

time [s]

(b) Velocity
[rad/s] ∗ 101

filtered demo DMP - filtered demo QP - filtered demo
0 1

time [s]

(c) Acceleration
[rad/s2] ∗ 102

Fig. 6. Differentiation of the position signal with smoothing by a Savitzky-
Golay filter results in better imitation for both the QP and the DMP. To the
demonstration’s position signal we added a noise of amplitude 0.01 [rad]
this will be amplified by the differentiation to 10 [rad/s] in the velocity
and to 10000 [rad/s2] in the acceleration. The QP and the DMP used
the acceleration smoothed by the Savitzky-Golay filter. Filtering is very
desirable for the DMP to avoid jerky motion, and necessary for any useful
imitation with the QP.

accelerations, being unsuitable for imitation. Preprocessing
the demonstration offline through a smoothing filter gen-
erates a smooth acceleration profile suitable for imitation.
We used a Savitzky-Golay filter [20] to smooth the position
signal, achieving good results in the imitation (Fig. 6).

V. CONCLUSIONS

In this paper we explore an alternative way to adapt move-
ment primitives to new execution conditions. Expanding
from modern developments on DMPs, we take a novel
approach by posing the problem of imitation as a constrained
global optimization.
Our experiments show that our method maintains the
flexibility of the DMP formulation (i.e. possibility to change
initial and final positions, velocities, time) while adding
important additional features (i.e. possibility to add limits
and way-points during the whole trajectory). Moreover, the
generated trajectories always show the traits of the original
demonstration, by closely matching its acceleration profile.
Although not explored in this paper, other constraints can be
easily added, such as limitation of the maximum jerk in the
joints motion.
Solving the QP requires an extra computation step with

respect to the DMP formulation. However since the problem
is formulated as a convex quadratic program for which fast
solvers exist, the solution can be found sufficiently fast to be
used even in tasks that require low reaction times.

REFERENCES

[1] S. Schaal and C. Atkeson, “Learning Control in Robotics,” Robotics
Automation Magazine, IEEE, vol. 17, no. 2, pp. 20–29, June 2010.

[2] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in Proceedings of the Fourteenth Int. Conference on Mach. Learning,
ser. ICML ’97. Morgan Kaufmann Publishers Inc., 1997, pp. 12–20.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg, 2008,
pp. 1371–1394.

[4] B. Argall, S. Chernova, B. Browning, and M. Veloso, “A survey
of robot learning from demonstration.” Robotics and Autonomous
Systems, vol. 57, pp. 469–483, 2009.

[5] H. Ben Amor, E. Berger, D. Vogt, and B. Jung, “Kinesthetic boot-
strapping: Teaching motor skills to humanoid robots through physical
interaction,” in KI 2009: Advances in Artificial Intell., ser. Lecture
Notes in Computer Science, B. Mertsching, M. Hund, and Z. Aziz,
Eds. Springer Berlin Heidelberg, 2009, vol. 5803, pp. 492–499.

[6] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective.”

[7] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] J. Tani and M. Ito, “Self-organization of behavioral primitives as
multiple attractor dynamics: A robot experiment,” Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 33, no. 4, pp. 481–488, July 2003.

[9] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man and Cybernetics, Part B, vol. 37, pp. 286–298, 2007.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning stable non-linear
dynamical systems with gaussian mixture models,” IEEE Transaction
on Robotics, vol. 27, pp. 943–957, 2011.

[11] K. Dixon and P. Khosla, “Trajectory representation using sequenced
linear dynamical systems,” in ICRA 2004, vol. 4, April 2004, pp. 3925–
3930 Vol.4.

[12] R. Krug and D. Dimitrovz, “Representing movement primitives as
implicit dynamical systems learned from multiple demonstrations,” in
ICAR, 2013, Nov 2013, pp. 1–8.

[13] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” ICRA, 2002, pp.
1398–1403.

[14] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[15] J. Kober, K. Mulling, O. Kromer, C. H. Lampert, B. Scholkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
ICRA, 2010, May 2010, pp. 853–858.

[16] K. Mulling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” The Int. J.
of Robotics Research, vol. 32, no. 3, pp. 263–279, 2013.

[17] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in NIPS, 2013, pp. 2616–2624.

[18] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS 2004. Proceedings. 2004
IEEE/RSJ Int. Conf. on, vol. 3, Sept 2004, pp. 2149–2154 vol.3.

[19] S. Degallier and A. Ijspeert, “Modeling discrete and rhythmic move-
ments through motor primitives: a review,” Biological Cybernetics,
vol. 103, pp. 319–338, 2010.

[20] A. Savitzky and M. Golay, “Smoothing and differentiation of data by
simplified least squares procedures,” Anal. Chem., vol. 36, pp. 1627–
39, 1964.

911

